Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935051
1.
1.Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
2.
2.H. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nat. Mater. 11, 422 (2012).
http://dx.doi.org/10.1038/nmat3273
3.
3.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
4.
4.J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).
http://dx.doi.org/10.1126/science.1159725
5.
5.B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
http://dx.doi.org/10.1126/science.272.5266.1325
6.
6.K. Biswas, J. He, I. D. Blum, C. -I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 (2012).
http://dx.doi.org/10.1038/nature11439
7.
7.K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004).
http://dx.doi.org/10.1126/science.1092963
8.
8.K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem. 3, 160 (2011).
http://dx.doi.org/10.1038/nchem.955
9.
9.G. S. Nolas, J. Sharp, and H. J. Goldsmid, in Thermoelectrics: Basic Principles and New Materials Developments, edited by A. Zunger, R. M. Osgood, Jr., R. Hull, and H. Sakaki) (Springer Verlag, New York, 2001), Ch. 3.
10.
10.T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G. J. Snyder, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamanaka, Adv. Mater. 24, 3622 (2012).
http://dx.doi.org/10.1002/adma.201200732
11.
11.J. M. Yang, Y. L. Yan, Y. X. Wang, and G. Yang, RSC Adv. 4, 28714 (2014).
http://dx.doi.org/10.1039/c4ra02595d
12.
12.A. Yusufu, K. Kurosaki, A. Kosuga, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamanaka, Appl. Phys. Lett. 99, 061902 (2011).
http://dx.doi.org/10.1063/1.3617458
13.
13.W. T. Wu, K. C. Wu, Z. J. Ma, and R. J. Sa, Chem. Phys. Lett. 537, 62 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.04.025
14.
14.R. H. Liu, L. L. Xi, H. L. Liu, X. Shi, W. Q. Zhang, and L. D. Chen, Chem. Commun. 48, 3818 (2012).
http://dx.doi.org/10.1039/c2cc30318c
15.
15.P. Prabukanthan and R. Dhanasekaran, Mater. Res. Bull. 43, 1996 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.10.004
16.
16.T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125210
17.
17.N. F. Hinsche, B. Yu. Yavorsky, M. Gradhand, M. Czerner, M. Winkler, J. König, H. Böttner, I. Mertig, and P. Zahn, Phys. Rev. B 86, 085323 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085323
18.
18.N. Cheng, R. Liu, S. Bai, X. Shi, and L. Chen, J. Appl. Phys. 115, 163705 (2014).
http://dx.doi.org/10.1063/1.4872250
19.
19.A. Kosuga, T. Plirdpring, R. Higashine, M. Matsuzawa, K. Kurosaki, and S. Yamanaka, Appl. Phys. Lett. 100, 042108 (2012).
http://dx.doi.org/10.1063/1.3678044
20.
20.P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
21.
21.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
22.
22.G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
23.
23.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
24.
24.G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
25.
25.J. W. Zhang, R. H. Liu, N. Cheng, Y. B. Zhang, J. H. Yang, C. Uher, X. Shi, L. D. Chen, and W. Q. Zhang, Adv. Mater. 26, 3848 (2014).
http://dx.doi.org/10.1002/adma.201400058
26.
26.S. N. Rashkeev and W. R. L. Lambrecht, Phys. Rev. B 63, 165212 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165212
27.
27.I. V. Bodnar, A. Eifler, T. Doering, W. Schmitz, K. Bente, V. F. Gremenok, I. A. Victorov, and V. Riede, Cryst. Res. Technol. 35, 1135 (2000).
http://dx.doi.org/10.1002/1521-4079(200010)35:10<1135::AID-CRAT1135>3.0.CO;2-6
28.
28.S. Schorr, V. Riede, D. Spemann, and T. Doering, J. Alloys Compd. 414, 26 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.07.014
29.
29.M. Mobarak and H.T. Shaban, Mater. Chem. Phys. 147, 439 (2014).
http://dx.doi.org/10.1016/j.matchemphys.2014.05.012
30.
30.M. G. Holland, Phys. Rev. 132, 2461 (1963).
http://dx.doi.org/10.1103/PhysRev.132.2461
31.
31.G. W. Wang et al., private communication.
32.
32.K. P. Ong, D. J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115110
33.
33.J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
http://dx.doi.org/10.1103/PhysRev.80.72
34.
34.Y. P. Li, Q. S. Meng, Y. Deng, H. Zhou, Y. L. Gao, Y. Y. Li, J. F. Yang, and J. L. Cui, Appl. Phys. Lett. 100, 231903 (2012).
http://dx.doi.org/10.1063/1.4726109
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935051
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935051
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935051
2015-10-28
2016-09-27

Abstract

The electronic and transport properties of CuInTe chalcopyrite are investigated using density functional calculations combined with Boltzmann theory. The band gap predicted from hybrid functional is 0.92 eV, which agrees well with experimental data and leads to relatively larger Seebeck coefficient compared with those of narrow-gap thermoelectric materials. By fine tuning the carrier concentration, the electrical conductivity and power factor of the system can be significantly optimized. Together with the inherent low thermal conductivity, the values of CuInTe compound can be enhanced to as high as 1.72 at 850 K, which is obviously larger than those measured experimentally and suggests there is still room to improve the thermoelectric performance of this chalcopyrite compound.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935051.html;jsessionid=XYNzYqCWsx4WRzTWrhzzgSAI.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935051&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935051&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935051'
Right1,Right2,Right3,