Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935059
1.
1.S. M. Sze, VLSI Technology (McGraw-Hill, New York, 1983).
2.
2.M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Material Processing (John Wiley and Sons, New York, 1994).
3.
3.G. Bruno, P. Capezzuto, and A. Madan, Plasma Deposition of Amorphous Silicon-Based Materials (Academic Press, San Diego, 1995).
4.
4.Y. Itikawa, Molecular Processes in Plasmas (Stringer, Berlin, 2007).
5.
5.K. Tachibana, M. Nishida, H. Harima, and Y. Urano, J. Phys. D 17, 1727 (1984).
http://dx.doi.org/10.1088/0022-3727/17/8/026
6.
6.M. J. Kushner, J. Appl. Phys. 63, 2532 (1988).
http://dx.doi.org/10.1063/1.340989
7.
7.R. Albert and A.–L. Barabasi, Rev. Modern Phys. 74, 47 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
8.
8.M. E. J. Newman, SIAM Rev. 45, 167 (2003).
http://dx.doi.org/10.1137/S003614450342480
9.
9.E. D. Kolaczyk, Statistical Analysis of Network Data: Methods and Models (Springer, Berlin, 2009).
10.
10.Proceedings of the Symposium on Generalized Networks, edited by J. Fox (Polytechnic Press, New York, 1966).
11.
11.H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabasi, Nature (London) 407, 651 (2000).
http://dx.doi.org/10.1038/35036627
12.
12.H. Jeong, S. P. Mason, Z. N. Oltvai, and A.-L. Barabasi, Nature (London) 411, 41 (2001).
http://dx.doi.org/10.1038/35075138
13.
13.D. Mariotti and R. M. Sankaran, J. Phys. D 43, 323001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/32/323001
14.
14.M. Shiratani, K. Koga, S. Iwashita, G. Uchida, N. Itagaki, and K. Kamataki, J. Phys. D 44, 174038 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174038
15.
15.T. Murakami, K. Niemi, T. Gans, D. O’Connell, and W. G. Graham, Plasma Sources Sci. Technol. 22, 015003 (2013).
http://dx.doi.org/10.1088/0963-0252/22/1/015003
16.
16.E. Gogolides, D. Mary, A. Rhallabi, and G. Terban, Jpn. J. Appl. Phys. 34, 261 (1995).
http://dx.doi.org/10.1143/JJAP.34.261
17.
17.M. Hiramatsu, K. Shinji, H. Amano, and M. Hori, Appl. Phys. Lett. 84, 4708 (2004).
http://dx.doi.org/10.1063/1.1762702
18.
18.J. S. Samson, R. Meisner, E. Brundermann, M. Boke, J. Winter, and M. Havenith, J. Appl. Phys. 105, 064908 (2009).
http://dx.doi.org/10.1063/1.3086650
19.
19.S. Brin and L. Page, Computer Networks and ISDN Systems 30, 107 (1998).
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
20.
20.J. Wormhoudt, J. Vac. Sci. Technol. A 8, 1722 (1990).
http://dx.doi.org/10.1116/1.576837
21.
21.S. Naito, H. Nomura, and T. Goto, Rev. Laser Eng. 20, 746 (1992).
http://dx.doi.org/10.2184/lsj.20.9_746
22.
22.Y. Itikawa, J. Phys. Chem. Ref. Data 31, 749 (2002).
http://dx.doi.org/10.1063/1.1481879
23.
23.O. Sakai, T. Morita, N. Sano, T. Shirafuji, T. Nozaki, and K. Tachibana, J. Phys. D: Appl. Phys. 42, 202004 (2009).
http://dx.doi.org/10.1088/0022-3727/42/20/202004
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935059
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935059
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935059
2015-10-28
2016-12-11

Abstract

Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935059.html;jsessionid=xX2LSQirWTo7AFEGcJLX3p9c.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935059&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935059&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935059'
Right1,Right2,Right3,