Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935067
1.
1.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
2.
2.Z. Y. Cui, T. N. Chen, J. H. Wu, H. L. Chen, and B. Zhang, Appl. Phys. Lett. 93, 144103 (2008).
http://dx.doi.org/10.1063/1.2994690
3.
3.J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3012
4.
4.F. Liu, F. Cai, Y. Ding, and Z. Liu, Appl. Phys. Lett. 92, 103504 (2008).
http://dx.doi.org/10.1063/1.2896146
5.
5.T. T. Wu, J. C. Hsu, and J. H. Sun, IEEE Trans. Ultrason. Ferroelectr.Freq. Control 58, 2146 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.2064
6.
6.C. Y. Lee, M. J. Leamy, and J. H. Nadler, J. Sound Vib. 329, 1809 (2010).
http://dx.doi.org/10.1016/j.jsv.2009.11.030
7.
7.Y. Xiao, J. H. Wen, and X. S. Wen, J. Sound Vib. 331, 5408 (2012).
http://dx.doi.org/10.1016/j.jsv.2012.07.016
8.
8.G. Acar and C. Yilmaz, J. Sound Vib. 332, 6389 (2013).
http://dx.doi.org/10.1016/j.jsv.2013.06.022
9.
9.J. H. Ma, Z. L. Hou, and B. M. Assouar, J. Appl. Phys. 115, 093508 (2014).
http://dx.doi.org/10.1063/1.4867617
10.
10.C. Qiu, Z. Liu, J. Mei, and J. Shi, Appl. Phys. Lett. 87, 104101 (2005).
http://dx.doi.org/10.1063/1.2037853
11.
11.J. H. Sun and T. T. Wu, Phys. Rev. B. 74, 174305 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.174305
12.
12.Y. C. Zhao, L. Z. Deng, and L. B. Yuan, Phys. Scr. 85, 025401 (2012).
http://dx.doi.org/10.1088/0031-8949/85/02/025401
13.
13.M. M. Sigalas, J. Appl. Phys. 84, 3026 (1998).
http://dx.doi.org/10.1063/1.368456
14.
14.R. H. Olsson III and I. El-Kady, Meas. Sci. Technol. 20, 012002 (2009).
http://dx.doi.org/10.1088/0957-0233/20/1/012002
15.
15.M. F. Su, R. H. Olsson III, Z. C. Leseman, and I. El-Kady, Appl. Phys. Lett. 96, 053111 (2010).
http://dx.doi.org/10.1063/1.3280376
16.
16.T. T. Wu, Z. G. Huang, T. C. Tsai, and T. C. Wu, Appl. Phys. Lett. 93, 111902 (2008).
http://dx.doi.org/10.1063/1.2970992
17.
17.K.P. Yu, T. N. Chen, and X.P. Wang, Physica B. 416, 12 (2013).
http://dx.doi.org/10.1016/j.physb.2013.02.011
18.
18.M. Oudich, Y. Li, B. M. Assouar, and Z. L. Hou, New. J. Phys. 12, 083049 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/083049
19.
19.H. B. Zhang, J. J. Chen, and X. Han, J. Appl. Phys. 112, 054503 (2012).
http://dx.doi.org/10.1063/1.4749400
20.
20.C. Goffaux and J. P. Vigneron, Phys. Rev. B. 64, 075118 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075118
21.
21.Y. G. Li, T. N. Chen, X. P. Wang, and Q. X. Liang, Phys. Lett. A. 379, 412 (2015).
http://dx.doi.org/10.1016/j.physleta.2014.11.028
22.
22.J. J. Chen, H. L. W. Chan, and J. C. Cheng, Phys. Lett. A. 366, 493 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.02.034
23.
23.A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, and L. Dobrzynski, Phys. Rev. B. 65, 174308 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.174308
24.
24.A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, and V. Laude, Phys. Rev. B. 68, 214301 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214301
25.
25.A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
http://dx.doi.org/10.1063/1.1757642
26.
26.M. Oudich, M. B. Assouar, and Z. L. Hou, Appl. Phys. Lett. 97, 193503 (2010).
http://dx.doi.org/10.1063/1.3513218
27.
27.Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, Phys. Rev. E. 69, 046608 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.046608
28.
28.L. Y. Wu and L. W. Chen, J. Phys. D: Appl. Phys. 43, 055401 (2010).
http://dx.doi.org/10.1088/0022-3727/43/5/055401
29.
29.A. Khelif, M. Wilm, V. Laude, and S. Ballandras, Phys. Rev. E. 69, 067601 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.067601
30.
30.F. G. Wu, Z.Y. Liu, and Y. Y. Liu, Phys. Rev. E. 69, 066609 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.066609
31.
31.L. Y. Wu and L. W. Chen, Appl. Acoust. 312, 73 (2012).
32.
32.P. Jiang, X. P. Wang, T. N. Chen, and J. Zhu, J. Appl. Phys. 117, 154301 (2015).
http://dx.doi.org/10.1063/1.4917565
33.
33.P. P. Huang, Y. W. Yao, F. G. Wu, and X. Zhang, J. Appl. Phys. 115, 063510 (2014).
http://dx.doi.org/10.1063/1.4865797
34.
34.COMSOL MULTIPHYSICS 3.5 Manual, Comsol, AB, Stockholm, Sweden, (2008).
35.
35.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science. 289, 1734 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
36.
36.P. Wang, T.N. Chen, K. P Yu, and X.P. Wang, J. Appl. Phys. 113, 053509 (2013).
http://dx.doi.org/10.1063/1.4790301
37.
37.S. W. Zhang, J. H. Wu, and Z. P. Hu, J. Appl. Phys. 113, 163511 (2013).
http://dx.doi.org/10.1063/1.4803075
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935067
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935067
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935067
2015-10-28
2016-09-27

Abstract

In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers’ stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935067.html;jsessionid=4wdR7Jksqg3CNvW1GNkHcPEY.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935067&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935067&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935067'
Right1,Right2,Right3,