Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
2.Z. Y. Cui, T. N. Chen, J. H. Wu, H. L. Chen, and B. Zhang, Appl. Phys. Lett. 93, 144103 (2008).
3.J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
4.F. Liu, F. Cai, Y. Ding, and Z. Liu, Appl. Phys. Lett. 92, 103504 (2008).
5.T. T. Wu, J. C. Hsu, and J. H. Sun, IEEE Trans. Ultrason. Ferroelectr.Freq. Control 58, 2146 (2011).
6.C. Y. Lee, M. J. Leamy, and J. H. Nadler, J. Sound Vib. 329, 1809 (2010).
7.Y. Xiao, J. H. Wen, and X. S. Wen, J. Sound Vib. 331, 5408 (2012).
8.G. Acar and C. Yilmaz, J. Sound Vib. 332, 6389 (2013).
9.J. H. Ma, Z. L. Hou, and B. M. Assouar, J. Appl. Phys. 115, 093508 (2014).
10.C. Qiu, Z. Liu, J. Mei, and J. Shi, Appl. Phys. Lett. 87, 104101 (2005).
11.J. H. Sun and T. T. Wu, Phys. Rev. B. 74, 174305 (2006).
12.Y. C. Zhao, L. Z. Deng, and L. B. Yuan, Phys. Scr. 85, 025401 (2012).
13.M. M. Sigalas, J. Appl. Phys. 84, 3026 (1998).
14.R. H. Olsson III and I. El-Kady, Meas. Sci. Technol. 20, 012002 (2009).
15.M. F. Su, R. H. Olsson III, Z. C. Leseman, and I. El-Kady, Appl. Phys. Lett. 96, 053111 (2010).
16.T. T. Wu, Z. G. Huang, T. C. Tsai, and T. C. Wu, Appl. Phys. Lett. 93, 111902 (2008).
17.K.P. Yu, T. N. Chen, and X.P. Wang, Physica B. 416, 12 (2013).
18.M. Oudich, Y. Li, B. M. Assouar, and Z. L. Hou, New. J. Phys. 12, 083049 (2010).
19.H. B. Zhang, J. J. Chen, and X. Han, J. Appl. Phys. 112, 054503 (2012).
20.C. Goffaux and J. P. Vigneron, Phys. Rev. B. 64, 075118 (2001).
21.Y. G. Li, T. N. Chen, X. P. Wang, and Q. X. Liang, Phys. Lett. A. 379, 412 (2015).
22.J. J. Chen, H. L. W. Chan, and J. C. Cheng, Phys. Lett. A. 366, 493 (2007).
23.A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, and L. Dobrzynski, Phys. Rev. B. 65, 174308 (2002).
24.A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, and V. Laude, Phys. Rev. B. 68, 214301 (2003).
25.A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
26.M. Oudich, M. B. Assouar, and Z. L. Hou, Appl. Phys. Lett. 97, 193503 (2010).
27.Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, Phys. Rev. E. 69, 046608 (2004).
28.L. Y. Wu and L. W. Chen, J. Phys. D: Appl. Phys. 43, 055401 (2010).
29.A. Khelif, M. Wilm, V. Laude, and S. Ballandras, Phys. Rev. E. 69, 067601 (2004).
30.F. G. Wu, Z.Y. Liu, and Y. Y. Liu, Phys. Rev. E. 69, 066609 (2004).
31.L. Y. Wu and L. W. Chen, Appl. Acoust. 312, 73 (2012).
32.P. Jiang, X. P. Wang, T. N. Chen, and J. Zhu, J. Appl. Phys. 117, 154301 (2015).
33.P. P. Huang, Y. W. Yao, F. G. Wu, and X. Zhang, J. Appl. Phys. 115, 063510 (2014).
34.COMSOL MULTIPHYSICS 3.5 Manual, Comsol, AB, Stockholm, Sweden, (2008).
35.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science. 289, 1734 (2000).
36.P. Wang, T.N. Chen, K. P Yu, and X.P. Wang, J. Appl. Phys. 113, 053509 (2013).
37.S. W. Zhang, J. H. Wu, and Z. P. Hu, J. Appl. Phys. 113, 163511 (2013).

Data & Media loading...


Article metrics loading...



In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers’ stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd