Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935099
1.
1.B.M. Klein, L.L. Boyer, and D.A. Papaconstantopoulos, Phys. Rev. Lett. 42, 530-533 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.530
2.
2.A. Vostner and E. Salpietro, Supercond. Sci. Technol. 19, S90-S95 (2006).
http://dx.doi.org/10.1088/0953-2048/19/3/012
3.
3.L. Bottura, G.D. Rijk, L. Rossi, and E. Todesco, IEEE Trans. Appl. Supercond. 22, 4002008 (2012).
http://dx.doi.org/10.1109/TASC.2012.2186109
4.
4.Z. Fisk and G.W. Webb, Phys. Rev. Lett. 36, 1084-1085 (1976).
http://dx.doi.org/10.1103/PhysRevLett.36.1084
5.
5.G.S. Knapp, S.D. Bader, and Z. Fisk, Phys. Rev. B 13, 3783-3789 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.3783
6.
6.S. Paidassi, J. Spitz, and J. Besson, Appl. Phys. Lett. 33, 105-107 (1978).
http://dx.doi.org/10.1063/1.90171
7.
7.M. Poirier, R. Plamondon, J.D.N. Cheeke, and J.F. Bussiere, J. Appl. Phys. 55, 3327-3332 (1984).
http://dx.doi.org/10.1063/1.333370
8.
8.C. Paduani, Braz. J. Phys. 37, 1073-1076 (2007).
9.
9.M. Sundareswari, S. Ramasubramanian, and M. Rajagopalan, Solid State Commun. 150, 2057-2060 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.08.004
10.
10.J.W. Ekin, J. Appl. Phys. 62, 4829-4834 (1987).
http://dx.doi.org/10.1063/1.338986
11.
11.B.T. Haken, A. Godeke, and H.H.J.T. Kate, J. Appl. Phys. 85, 3247 (1999).
http://dx.doi.org/10.1063/1.369667
12.
12.T.F. Smith, J. Low Temp. Phys. 6, 171-195 (1972).
http://dx.doi.org/10.1007/BF00630915
13.
13.Z.H. Yu, C.Y. Li, and H.Z. Liu, Physica B 407, 3635-3638 (2012).
http://dx.doi.org/10.1016/j.physb.2012.05.041
14.
14.W.D. Markiewicz, Cryogenics 44, 767-782 (2004).
http://dx.doi.org/10.1016/j.cryogenics.2004.03.019
15.
15.G.D. Marzi, L. Morici, L. Muzzi, A.D. Corte, and M.B. Nardelli, J.Phys.: Condens Matter 25, 135702 (2013).
http://dx.doi.org/10.1088/0953-8984/25/13/135702
16.
16.M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J.Phys. : Condens Matter 14, 2717-2744 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/301
17.
17.V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V.A. Akhmatskaya, and R.H. Nobes, Int. J. Quantum Chem. 77, 895-910 (2000).
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
18.
18.J.P. Perdew and Y. Wang, Phys. Rev. B 33, 8800-8802 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8800
19.
19.D. Vanderbilt, Phys. Rev. B 41, 7892-7895 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
20.
20.D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).
21.
21.B.B. Karki, G.J. Ackland, and J. Crain, J.Phys.: Condens Matter 9, 8579-8589 (1997).
http://dx.doi.org/10.1088/0953-8984/9/41/005
22.
22.T.H.K. Barron and M.L. Klein, Proceedings of the Physical Society 85, 523-532 (1995).
http://dx.doi.org/10.1088/0370-1328/85/3/313
23.
23.G. V. Sin’ko and N. A. Smirnov, J. Phys.:Condens. Matter 14, 6989 (2002).
http://dx.doi.org/10.1088/0953-8984/14/29/301
24.
24.R. Hill, Proceedings of the Physical Society. Section A 65, 349-354 (1952).
http://dx.doi.org/10.1088/0370-1298/65/5/307
25.
25.E. Schreiber, O. L. Anderson, and M. Saga, Elastic Constants and their Measurement (McGraw-Hill, New York, 1973).
26.
26.Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054115
27.
27.Y. K. Wei, N. N. Ge, G. F. Ji, X. R. Chen, L.C. Cai, S. Q. Zhou, and D. Q. Wei, J. Appl. Phys. 114, 114905 (2013).
http://dx.doi.org/10.1063/1.4821287
28.
28.O.L. Anderson, J. Phys. Chem. Solids 24, 909-917 (1963).
http://dx.doi.org/10.1016/0022-3697(63)90067-2
29.
29.C. Ganeshraj and P. N. Santhosh, J. Appl. Phys. 116, 144104 (2014).
http://dx.doi.org/10.1063/1.4897452
30.
30.Z. Chen, P. Zhang, D. Chen, Y. Wu, M. L. Wang, N. H. Ma, and H. W. Wang, J. Appl. Phys. 117, 085904 (2015).
http://dx.doi.org/10.1063/1.4913664
31.
31.J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 106, 162-164 (1957).
http://dx.doi.org/10.1103/PhysRev.106.162
32.
32.W.L. McMillan, Phys. Rev. 167, 331-344 (1968).
http://dx.doi.org/10.1103/PhysRev.167.331
33.
33.P.B. Allen and R.C. Dynes, Phys. Rev. B 12, 905-922 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.905
34.
34.K.H. Benemann and J.W. Garland, in Superconductivity in D- and F-B and Metals, edited byD.H. Douglass (American Institute of Physics, New York, 1971).
35.
35.A.T.A. Meenaatci, R. Rajeswarapalanichamy, and KIyakutti, Solid State Sci. 19, 36-44 (2013).
http://dx.doi.org/10.1016/j.solidstatesciences.2013.02.004
36.
36.K. C. Lim, J. D. Thompson, and G. W. Webb, Phys. Rev. B 27, 2781 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.2781
37.
37.S.F. Pugh, Philosophical Magazine 45, 823-843 (1954).
http://dx.doi.org/10.1080/14786440808520496
38.
38.B. Mitrovic, E. Schachinger, and J.P. Carbotte, Phys. Rev. B 29, 6187-6197 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.6187
39.
39.M. Rajagopalan, Physica B 413, 1-5 (2013).
http://dx.doi.org/10.1016/j.physb.2012.12.029
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935099
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935099
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935099
2015-10-29
2016-09-30

Abstract

The low temperature superconducting materials, such as Nb Sn and Nb Al, have similar crystal structures and elastic properties. However, their critical-temperature degradations always show the distinct way under mechanical stresses. In this study, first-principles calculations for the low temperature superconductors based on plane-wave pseudo-potential density functional theory within the generalized gradient approximation are implemented, and the elastic moduli of Nb Sn and Nb Al and those superconductivities in the presence of hydrostatic pressure are evaluated. The Debye temperatures are obtained by the bulk moduli and shear moduli of superconducting materials. The MacMillan equation is further used to acquire the critical temperatures of Nb Sn and Nb Al under different hydrostatic pressures. It is found that the elastic constants and bulk moduli of the low temperature superconductors are enhanced by the applied hydrostatic pressure, while the critical temperatures usually are decreased with the pressure. Additionally, the decrease of critical-temperature for Nb Sn is more sensitive to the hydrostatic pressure than the one for Nb Al. The prediction results show good agreement with the experimental results in the literatures qualitatively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935099.html;jsessionid=tErztK5o2AVOyFOL2E7nCn5D.x-aip-live-06?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935099&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935099&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935099'
Right1,Right2,Right3,