Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935102
1.
1.A. Czernichowski, H. Lesueur, T. Czech, and J. Chapelle, ISPC-10 Bochum August 1991.
2.
2.Z. J. Li, Y. L. Xiao, W. J. Xue, Q. Y. Yang, and C. L. Zhong, J. Phys. Chem. C 119, 3674-3683 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b00019
3.
3.E. Sisani, G. Cinti, G. Discepoli, D. Penchini, U. Desideri, and F. Marmottini, Int. J. Hydrogen Eng. 39, 21753-21766 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.07.173
4.
4.Z. Y. Lou, M .C. Wang, Y. C. Zhao, and R. H. Huang, J. Air Waste Manage. 65, 479-484 (2015).
http://dx.doi.org/10.1080/10962247.2014.1002870
5.
5.Y. Du, H. Feng, K. Zhang, L. F. Hu, C. R. Fang, D. S. Shen, and Y. Y. Long, J. Hazard. Mater. 272, 36-41 (2014).
http://dx.doi.org/10.1016/j.jhazmat.2014.02.040
6.
6.T. J. Bandosz, J. Colloid Interf. Sci. 246, 1-20 (2002).
http://dx.doi.org/10.1006/jcis.2001.7952
7.
7.T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A. Starikovsky, A. Gutsol, and R. W. Potter, Int. J. Hydrogen Eng. 34, 7618-7625 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.07.045
8.
8.J. S. Eow, Environ. Prog. 21, 143-162 (2002).
http://dx.doi.org/10.1002/ep.670210312
9.
9.K. Gutsol, T. Nunnally, A. Rabinovich, A. Fridman, A. Starikovskiy, A. Gutsol, and A. Kemoun, Int. J. Hydrogen Eng. 37, 1335-1347 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2011.10.048
10.
10.L. Kolodkina, Zh. Fiz. Khimii 6, 428-435 (1935).
11.
11.A. Z. Bagautdinov, V. K. Zhivotov, I. A. Kalachev, S. Y. Musinov, A. M. Pampushka, V. D. Rusanov, V. M. Tsoller, and P. Y. Epp, Zh. Tekh. Fiz. 61, 197-200 (1991).
12.
12.M. I. Strelkova, A. A. Alekseev, B. I. Patrushev, B. V. Potapkin, V. D. Rusanov, and A. A. Fridman, High Energy Chem. 24, 471-474 (1990).
13.
13.I. Traus, H. Suhr, J. E. Harry, and D. R. Evans, Plasma Chem. Plasma Process. 13, 77-91 (1993).
http://dx.doi.org/10.1007/BF01447171
14.
14.N.-Q. Yan, Z. Qu, J.-P. Jia, X.-P. Wang, and D. Wu, Ind. Eng. Chem. Res. 45, 6420-6427 (2006).
http://dx.doi.org/10.1021/ie060471f
15.
15.G.-B. Zhao, S. John, J.-J. Zhang, J. C. Hamann, S. S. Muknahallipatna, S. Legowski, J. F. Ackerman, and M. D. Argyle, Chem. Eng. Sci. 62, 2216-2227 (2007).
http://dx.doi.org/10.1016/j.ces.2006.12.052
16.
16.S. John, J. C. Hamann, S. S. Muknahallipatna, S. Legowski, J. F. Ackerman, and M. D. Argyle, Chem. Eng. Sci. 64, 4826-4834 (2009).
http://dx.doi.org/10.1016/j.ces.2009.07.034
17.
17.J. Jarrige and P. Vervisch, Plasma Chem. Plasma Process. 27, 241-255 (2007).
http://dx.doi.org/10.1007/s11090-007-9049-3
18.
18.A. Czernichowski, Rev. I. Fr. Petrol. 53, 163-179 (1998).
19.
19.Y. C. Hong, D. H. Shin, and H. S. Uhm, Appl. Phys. Lett. 91, 161502 (2007).
http://dx.doi.org/10.1063/1.2800302
20.
20.M. Sassi and N. Amira, Int. J. Hydrogen Eng. 37, 10010-10019 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.04.006
21.
21.V. V. Khrikulov, V. G. Grachev, M. F. Krotov, B. V. Potapkin, V. D. Rusanov, and A. A. Fridman, High Energy Chem. 26, 297-302 (1992).
22.
22.V. Dalaine, J. M. Cormier, S. Pellerin, and P. Lefaucheux, J. Appl. Phys. 84, 1215-1221 (1998).
http://dx.doi.org/10.1063/1.368187
23.
23.T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, and A. Gutsol, Int. J. Hydrogen Eng. 39, 12480-12489 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.06.040
24.
24.S. A. Nester, V. D. Rusanov, and A. A. Fridman, High Energy Chem. 22, 389-392 (1988).
25.
25.B. V. Potapkin, V. D. Rusanov, M. I. Strelkova, and A. A. Fridman, High Energy Chem. 24, 131-136 (1990).
26.
26.J. Jarrige and P. Vervisch, Plasma Chem. Plasma Process. 27, 241-255 (2007).
http://dx.doi.org/10.1007/s11090-007-9049-3
27.
27.W.-J. Liang, L. Ma, J. Li, J.-X. Li, and F. Zheng, Clean - Soil Air Water 40, 586-591 (2012).
http://dx.doi.org/10.1002/clen.201100239
28.
28.W.-J. Liang, H.-P. Fang, J. Li, F. Zheng, J.-X. Li, and Y.-Q. Jin, J. Electrostat. 69, 206-213 (2013).
http://dx.doi.org/10.1016/j.elstat.2011.03.011
29.
29.L. Huang, L. Xia, W. Dong, and H. Hou, Chem. Eng. J. 228, 1066-1073 (2013).
http://dx.doi.org/10.1016/j.cej.2013.05.058
30.
30.S. Shin, H.-J. Hwang, and J. Song, Water Sci. Technol. 64, 2389-2394 (2011).
http://dx.doi.org/10.2166/wst.2011.807
31.
31.B. V. Potapkin, M. I. Strelkova, and A. A. Fridman, High Energy Chem. 26, 50-55 (1992).
32.
32.A. Z. Bagautdinov, V. K. Zhivotov, S. V. Musinov, A. M. Pampushka, V. D. Rusanov, V. A. Tsoller, and P. Y. Epp, High Energy Chem. 26, 55-61 (1992).
33.
33.U. Kogelschatz, E. Killer, and B. Eliasson, in 52nd Annual Gaseous Electronics Conference, Norfolk (Virginia), USA, October 1999.
34.
34.F. A. Teimurova, A. M. Rasulov, and N. T. Klimov, High Energy Chem. 25, 316-317 (1991).
35.
35.I. Traus and H. Suhr, Plasma Chem. Plasma Process. 12, 275-285 (1992).
http://dx.doi.org/10.1007/BF01447026
36.
36.E. Linga Reddy, V. M. Biju, and Ch. Subrahmanyam, Int. J. Hydrogen Eng. 37, 2204-2209 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2011.10.118
37.
37.E. Linga Reddy, J. Karuppiah, and Ch. Subrahmanyam, J. Energy Chem. 22, 382-386 (2013).
http://dx.doi.org/10.1016/S2095-4956(13)60049-2
38.
38.H. Ma, P. Chen, and R- Ruan, Plasma Chem. Plasma Process. 21, 611-624 (2001).
http://dx.doi.org/10.1023/A:1012055203010
39.
39.H. Zhang, T. Ji, R. Zhang, and H. Hou, Plasma Sci. Technol. 14, 134-139 (2012).
http://dx.doi.org/10.1088/1009-0630/14/2/10
40.
40.M. Holub, R. Brandenburg, H. Grosch, S. Weinmann, and B. Hansel, Aerosol Air Qual. Res. 14, 697-707 (2014).
41.
41.Z. Li, H. Li’an, and Y. Linsong, Plasma Sci. Technol. 5, 1961-1964 (2003).
http://dx.doi.org/10.1088/1009-0630/5/5/006
42.
42.J. S. Herman and F. L. Terry, Jr., J. Electron. Mater. 22, 119-124 (1993).
http://dx.doi.org/10.1007/BF02665733
43.
43.E. Linga Reddy, V. M. Biju, and Ch. Subrahmanyam, Int. J. Hydrogen Eng. 37, 8217-8222 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.02.156
44.
44.L. Zhao, Y. Wang, X. Li, A. Wang, C. Song, and Y. Hu, Int. J. Hydrogen Eng. 38, 14415-14423 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.09.008
45.
45.C. H. Subrahmanyam, A. Renken, and L. Kiwi-Minsker, J. Optoelectron. Adv. M. 10, 1991-1993 (2008).
46.
46.J. T. Yang, Y. Shi, W. Li, X. Wang, and D. H. Wang, Abstr. Pap. Am. Chem. S. 231, 148-ENVR (2006).
47.
47.R. A. Khalil, M. Seljeskog, and J. E. Hustad, Energy Fuels 22, 2789-2795 (2008).
http://dx.doi.org/10.1021/ef8001235
48.
48.D. R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. (CRC Press LLC, 1998), ISBN: 0-8493-0479-2.
49.
49.C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, Optics Letters 37, 566-568 (2012).
http://dx.doi.org/10.1364/OL.37.000566
50.
50.M. Yoshimura and H. K. Bowen, J. Am. Ceram. Soc. 64, 404-410 (1981).
http://dx.doi.org/10.1111/j.1151-2916.1981.tb09879.x
51.
51.W. T. Lynch, J. Appl. Phys. 43, 3274-3278 (1972).
http://dx.doi.org/10.1063/1.1661706
52.
52.S. V. Kudryashov, A. Yu. Ryabov, A. N. Ochered’ko, K. B. Krivtsova, and G. S. Shchyogoleva, Plasma Chem. Plasma Process. 35, 201-215 (2015).
http://dx.doi.org/10.1007/s11090-014-9590-9
53.
53.B. Meyer, Chem. Rev. 76, 367-388 (1976).
http://dx.doi.org/10.1021/cr60301a003
54.
54.A. A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, 2nd edition (CRC Press LLC, 2011), ISBN: 978-1439812280.
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935102
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935102
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935102
2015-10-29
2016-12-04

Abstract

The efficient removal of hydrogen sulfide, HS, from streams of HS in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935102.html;jsessionid=NFTdek0fIbrd7f0bczVgpvW8.x-aip-live-06?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935102&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935102&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935102'
Right1,Right2,Right3,