Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Yamamoto, K. Tokiwa, H. Hirabayashi, M. Tokumoto, Nawazish, A. Khan, and H. Ihara, “Synthesis of Cu1−xTlxBa2Ca2Cu3O11−y (x∼0.7) superconductor by hot press,” Physica C 302, 137 (1998).
2.K. Tanaka, A. Iyo, N. Terada, K. Tokiwa, S. Miyashita, Y. Tanaka, T. Tsukamoto, S. K. Agarwal, T. Watanabe, and H. Ihara, “Tl valence change and Tc enhancement (> 130 K) in (Cu,Tl)Ba2Ca2Cu3O due to nitrogen annealing,” Phys. Rev. B 63, 064508 (2001).
3.H. Ihara, “How to achieve the best performance superconductor based on Cu-1234,” Physica C 364, 289 (2009).
4.S. Dadras, Y. Liu, Y. Chai, V. Daadmehr, and K. Kim, “Increase of critical current density with doping carbon nano-tubes in YBa2 Cu3O7−δ,” Physica C 469, 55 (2009).
5.A. Saoudel, A. Amira, Y. Boudjadja, N. Mahamdioua, L. Amirouche, A. Varilci, S. Altintas, and C. Terzioglu, “Study of the thermo-magnetic fluctuations in carbon nano-tubes added Bi-2223 superconductors,” Physica B 429, 33 (2013).
6.T. Palstra, B. Batlogg, R. Van Dover, L. Schneemeyer, and J. Waszczak, “Critical currents and thermally activated flux motion in high-temperature superconductors,” Appl. Phys. lett. 54, 763 (1989).
7.V. Grinenko, E. Krasnoperov, V. Stoliarov, A. Bush, and B. Mikhajlov, “Superconductivity in porous MgB2,” Solid State Comm. 138, 461 (2006).
8.H. Abbasi, J. Taghipour, and H. Sedghi, “Superconducting and transport properties of (Bi–Pb)–Sr–Ca–Cu–O with Cr2O3 additions,” J. Alloys Compd. 494, 305 (2010).
9.D. R. Nelson and H. S. Seung, “Theory of melted flux liquids,” Phys. Rev. B. 39, 9153 (1989).
10.A. A. Abrikosov, “On the magnetic properties of second kind superconductors,” Sov. Phys. 5, 1174 (1957).
11.S. Gordeev, P. De Groot, M. Oussena, A. Volkozub, S. Pinfold, R. Langan, R. Gagnon, and L. Taillefer, “Current-induced organization of vortex motion in type-II superconductors,” Nature 385, 324 (1997).
12.R. Cordoba, T. Baturina, J. Sese, A. Y. Mironov, J. De Teresa, M. Ibarra, D. Nasimov, A. Gutakovskii, A. Latyshev, and I. Guillamon, “Magnetic field-induced dissipation-free state in superconducting nanostructures,” Nature communications 4, 1437 (2013).
13.R. Geurts, M. Milosevic, and F. Peeters, “Topologically trapped vortex molecules in Bose-Einstein condensates,” Phys. Rev. A. 78, 053610 (2008).
14.T. Haugan, P. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, “Addition of nanoparticle dispersions to enhance flux pinning of the YBa2 Cu3O7−x superconductor,” Nature 430, 867 (2004).
15.J. Deak, M. McElfresh, D. Face, and W. Holstein, “Evidence for two vortex phase transitions in Tl2Ba2CaCu2O thin films,” Phys. Rev. B 52, R3880 (1995).
16.S. R. Ghorbani, X. Wang, M. Shabazi, S. Dou, K. Choi, and C. Lin, “Flux pinning and vortex transitions in doped BaFe2As2 single crystals,” Appl. Phys. Lett. 100, 072603 (2012).
17.X. Wan, Y. Sun, W. Song, L. Jiang, K. Wang, and J. Du, “Enhanced flux pinning of silver-sheathed tapes with nano-MgO particle addition,” Supercond. Sci. Technol. 11, 1079 (1998).
18.S. Vinu, P. M. Sarun, R. Shabna, A. Biju, P. Guruswamy, and U. Syamaprasad, “Influence of sintering temperature on microstructure, critical current density and pinning potential of superconducting Bi1.6Pb0.5Sr1.8Dy0.2Ca1.1Cu2.1O8+δ ceramics,” Solid State Sci. 11, 1150 (2009).
19.D. S. Fisher and D. A. Huse, “Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors,” Phys. Rev. B 43, 1 (1991).
20.T. Palstra, A. Batlogg, R. Van Dover, L. Schneemeyer, and J. Waszczak, “Dissipative flux motion in high-temperature superconductors,” Phys. Rev. B 41, 6621 (1990).
21.D. Galvan, S. Li, W. Yuhasz, J. Kim, M. Maple, and E. Adem, “Nondestructive interactions of carbon nanotubes with Bi2Sr2CaCu2O8,” Physica C 403, 145 (2004).
22.Nawazish A. Khan and Sadaf Aziz, “Single and multi-walled carbon nanotubes doped (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconductors,” J. Alloys Compound. 538, 183188 (2012).
23.M. A. Rafique, S. Aziz, N. Hassan, and Nawazish A. Khan, “Enhanced magnetic properties in Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconductor doped with carbon nanotubes,” J. Supercond. Nov. Magn. 27, 2427 (2014).
24.M. Shahbazi, X. L. Wang, S. R. Ghorbani, M. Ionescu, O. V. Shcherbakova, F. S. Wells, A. V. Pan, S. X. Dou, and K. Y. Choi, “Vortex-glass phase transition and enhanced flux pinning in C4+-irradiated BaFe1.9Ni0.1As2 superconducting single crystals,” Supercond. Sci. Technol. 26, 095014 (2013).
25.J. Ding, X. Xiang, Y. Zhang, H. Liu, and X. Li, “Two-dimensional superconductivity in stripe-ordered La1.6−xNd0.4SrxCuO4 single crystals,” Phys. Rev. B 77, 214524 (2008).
26.P. Le Doussal and T. Giamarchi, “Moving glass theory of driven lattices with disorder,” Phys. Rev. B 57, 11356 (1998).
27.G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, and Y. Zalaoglu, “Effect of Ce addition on the magnetoresistivity, irreversibility field, upper critical field and activation energies of Bi-2212 superconducting ceramics,” J. Supercond. Nov. Magn. 25, 893 (2012).
28.Y. Wang and H.-H. Wen, “Doping dependence of the upper critical field in La2−xSrxCuO4 from specific heat,” Euro phys. Lett. 81, 57007 (2008).
29.G. Yildirim, S. Bal, and A. Varilci, “Effect of Magnetic field direction on magnetoresistivity, activation energy, irreversibility and upper critical field of Bi-2212 thin film fabricated by DC sputtering method,” J. Supercond. Nov. Magn. 25, 1665 (2012).
30.I. Kusevic, E. Babic, Z. Marohnic, J. Ivkov, and S. Dou, “Flux pinning in Ag-clad Bi-2223 tapes containing different fractions of Bi2212 phase,” Physica C 235, 3035 (1994).
31.H. Liu, Y. Guo, S. Dou, S. Cassidy, L. Cohen, G. Perkins, A. Caplin, and N. Savvides, “Pinning mechanisms in Ag-sheathed Bi(Pb)SrCaCuO tapes,” Physica C 213, 95 (1993).
32.M. Nikolo, X. Shi, J. Jiang, J. Weiss, and E. Hellstrom, “Magnetotransport Properties, Thermally Activated Flux Flow, and Activation Energies in Ba (Fe0.95Ni0.05)2As2 and Ba (Fe0.94Ni0.06)2As2 Superconductors,” J. Supercond. Nov. Magn. 27, 1983 (2014).
33.M. Waqee-ur-Rehman, I. Qasim, M. Mumtaz, K. Nadeem, and A. Khurram, “Infield response of (Al2O3)x/CuTl-1223 nanoparticles-superconductor composites,” Physica B 476, 37 (2015).
34.H. Lei, R. Hu, E. Choi, and C. Petrovic, “Thermally activated energy and flux-flow Hall effect of Fe1+y(Te1+xSx)z,” Phys. Rev. B. 82, 134525 (2010).

Data & Media loading...


Article metrics loading...



We investigated the infield superconducting properties of carbon nanotubes-CuTlBaCaCuO superconductor {(CNTs) -(CuTl-1223)}; x = 0∼7 wt.% composites. The zero resistivity critical temperature {T(0)}, critical superconducting onset transition temperature {T onset(K)} and glass transition temperature (T) have been shifted towards lower values after the addition of carbon nanotubes (CNTs). The double transitions for all concentration of CNTs have indicated the existence of vortex-glass phase. The significant resistive broadening {ΔT = T onset(K)-T(0)} has been observed with increasing values of external applied magnetic field. The more increasing trend in resistive broadening has also been observed after the addition of CNTs in CuTl-1223 matrix. The magnetic field dependent activation energy U (H) has been calculated according to thermally activated flux flow (TAFF) model. The overall decreasing rate in pinning energy could be due to diffusion of carbon across the grain-boundaries.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd