Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442453 (2008).
2.P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics. 1, 438 (2009).
3.D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 6 (2006).
4.J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, hign-enhancement surface-enhanced Raman scatteting sensors,” ACS Nano. 5, 40464055 (2011).
5.B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796801 (2012).
6.K. Ueno and H. Misawa, “Photochemical reaction fields with strong coupling between a photon and a molecule,” J. Photochem. Photobiol., A. 221, 130137 (2011).
7.P. Melchior, D. Bayer, C. Schneider, a. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B - Condens. Matter Mater. Phy. 83, 17 (2011).
8.V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. a. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 38883912 (2011).
9.D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957961 (2004).
10.N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 49524955 (2010).
11.C. C. Hu, W. Yang, Y. T. Tsai, and Y. F. Chau, “Gap enhancement and transmittance spectra of a periodic bowtie nanoantenna array buried in a silica substrate,” Opt. Commun. 324, 227233 (2014).
12.H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express. 16, 77567766 (2008).
13.A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics. 3, 654657 (2009).
14.S. Y. Huang, H. H. Hsiao, Y. T. Chang, H. H. Chen, Y. W. Jiang, H. F. Huang, P. E. Chang, H. C. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with bowtie-shaped aperture array in midinfrared region,” Appl. Phys. Lett. 98, 14 (2011).
15.N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett. 36, 27642766 (2011).
16.E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B Lasers Opt. 84, 39 (2006).
17.E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 14 (2006).
18.H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-ir gold bowtie nanoantenna arrays,” J. Phys. Chem. C. 118, 2055320558 (2014).
19.P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 1417 (2005).
20.J. Calderón, J. Álvarez, J. Martinez-pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10, 703711 (2015) Springer.
21.B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express. 20, 27725–39 (2012).
22.M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces - dipolar interaction among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B. 2, 921949 (1985).
23.R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 1922719232 (2009).
24.R. Adato, A. A. Yanik, C. H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express. 18, 45264537 (2010).
25.K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced Raman-scattering,” J. Opt. Soc. Am. B. 3, 430440 (1986).
26.B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 47214724 (2000).
27.D. Weber, P. Albella, P. A. Gonzalez, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: Long range versus short range interaction regimes,” Opt. Express. 19, 1504715061 (2011).
28.J.-H. Kang, K. Kim, H.-S. Ee, Y.-H. Lee, T.-Y. Yoon, M.-K. Seo, and H.-G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
29.T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11, 10091013 (2011).
30.Z. Pan and J. Guo, “Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas,” Opt. Express. 21, 19951997 (2013).
31.E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Data & Media loading...


Article metrics loading...



A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd