Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935195
1.
1.A. Van Hook and L. Silver, The Journal of Chemical Physics 10(11), 686-690 (1942).
http://dx.doi.org/10.1063/1.1723645
2.
2.X. Liu, H. Liu, S. Wang, L. Zhang, and H. Cheng, Energy conversion and management 47(15), 2515-2522 (2006).
http://dx.doi.org/10.1016/j.enconman.2005.10.031
3.
3.H. Inaba and P. Tu, Heat and Mass Transfer 32(4), 307-312 (1997).
http://dx.doi.org/10.1007/s002310050126
4.
4.S. Himran, A. Suwono, and G. A. Mansoori, Energy Sources 16(1), 117-128 (1994).
http://dx.doi.org/10.1080/00908319408909065
5.
5.M. Rastogi, A. Chauhan, R. Vaish, and A. Kishan, Energy Conversion and Management 89, 260-269 (2015).
http://dx.doi.org/10.1016/j.enconman.2014.09.077
6.
6.I. Bugaje, International journal of energy research 21(9), 759-766 (1997).
http://dx.doi.org/10.1002/(SICI)1099-114X(199707)21:9<759::AID-ER254>3.0.CO;2-7
7.
7.H. F. Erk and M. Duduković, AichE journal 42(3), 791-808 (1996).
http://dx.doi.org/10.1002/aic.690420318
8.
8.C. Chapotard and D. Tondeur, Chemical Engineering Communications 24(4-6), 183-204 (1983).
http://dx.doi.org/10.1080/00986448308940081
9.
9.M. Li, M. Chen, Z. Wu, and J. Liu, Energy Conversion and Management 83, 325-329 (2014).
http://dx.doi.org/10.1016/j.enconman.2014.04.002
10.
10.B. Xu and Z. Li, Energy 72, 371-380 (2014).
http://dx.doi.org/10.1016/j.energy.2014.05.049
11.
11.A. Araújo, J. Correia, and C. M. Soares, (2015).
12.
12.S. Ye, Q. Zhang, D. Hu, and J. Feng, Journal of Materials Chemistry A 3(7), 4018-4025 (2015).
http://dx.doi.org/10.1039/C4TA05448B
13.
13.K. Sharma and M. Shukla, Journal of Nanomaterials 2014, 2 (2014).
14.
14.Z. Rao, S. Wang, and F. Peng, International Journal of heat and mass transfer 64, 581-589 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.05.017
15.
15.J.-P. Ryckaert, Molecular Physics 55(3), 549-556 (1985).
http://dx.doi.org/10.1080/00268978500101531
16.
16.K. Sharma, K. S. Kaushalyayan, and M. Shukla, Computational Materials Science 99, 232-241 (2015).
http://dx.doi.org/10.1016/j.commatsci.2014.12.023
17.
17.R. Mittal, M. Rastogi, N. Mahatele, and A. Vidhyarthi, presented at theNanoscience, Engineering and Technology (ICONSET), 2011 International Conference on, 2011 (unpublished).
18.
18.M. Rastogi and R. Vaish, AIP Advances 5(5), 057141 (2015).
http://dx.doi.org/10.1063/1.4921561
19.
19.G. Ungar, The Journal of Physical Chemistry 87(4), 689-695 (1983).
http://dx.doi.org/10.1021/j100227a032
20.
20.E. Sirota and D. Singer, The Journal of chemical physics 101(12), 10873-10882 (1994).
http://dx.doi.org/10.1063/1.467837
21.
21.D. Fu, Y. Su, B. Xie, H. Zhu, G. Liu, and D. Wang, Physical Chemistry Chemical Physics 13(6), 2021-2026 (2011).
http://dx.doi.org/10.1039/c0cp01173h
22.
22.A. Marbeuf and R. Brown, The Journal of chemical physics 124(5), 054901 (2006).
http://dx.doi.org/10.1063/1.2148909
23.
23.Y. Wang, B. Tang, and S. Zhang, Advanced Functional Materials 23(35), 4354-4360 (2013).
http://dx.doi.org/10.1002/adfm.201203728
24.
24.M. Mehrali, S. T. Latibari, M. Mehrali, H. S. C. Metselaar, and M. Silakhori, Energy Conversion and Management 67, 275-282 (2013).
http://dx.doi.org/10.1016/j.enconman.2012.11.023
25.
25.R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method (John Wiley & Sons, 2011).
26.
26.H. Sun, The Journal of Physical Chemistry B 102(38), 7338-7364 (1998).
http://dx.doi.org/10.1021/jp980939v
27.
27.r. S. D. A. Accelrys, Materials studio release notes and S. Inc.;, (2010.).
28.
28.J. C. Gilbert and J. Nocedal, SIAM Journal on optimization 2(1), 21-42 (1992).
http://dx.doi.org/10.1137/0802003
29.
29.S. Labík and W. Smith, Molecular Simulation 12(1), 23-31 (1994).
http://dx.doi.org/10.1080/08927029408022533
30.
30.E. Koopman and C. Lowe, The Journal of chemical physics 124(20), 204103 (2006).
http://dx.doi.org/10.1063/1.2198824
31.
31.M. Griebel, S. Knapek, and G. Zumbusch, Numerical simulation in molecular dynamics (Springer, 2007).
32.
32.N. S. Martys and R. D. Mountain, Physical Review E 59(3), 3733 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.3733
33.
33.S. Dutour, J.-L. Daridon, and B. Lagourette, HIGH TEMPERATURES HIGH PRESSURES 33(3), 371-378 (2001).
http://dx.doi.org/10.1068/htjr007
34.
34.J.-P. Hansen and I. R. McDonald, Theory of simple liquids (Elsevier, 1990).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935195
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935195
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935195
2015-10-30
2016-12-07

Abstract

The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935195.html;jsessionid=dcS9gSz9WkxW0pQc2h76m2v2.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935195&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935195&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935195'
Right1,Right2,Right3,