Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K.R. Rim, J.M. Park, W.T. Kim, and D.H. Kim, “Tensile necking and enhanced plasticity of cold rolled β-Ti dendrite reinforced Ti-based bulk metallic glass matrix composite,” J. Alloy. Compd. 579, 253258 (2013).
2.P. Gargarella, S. Pauly, M. Samadi Khoshkhoo, U. Kuhn, and J. Eckert, “Phase formation and mechanical properties of Ti-Cu-Ni-Zr bulk metallic glass composites,” Acta Mater. 64, 259269 (2014).
3.J.M. Park, D.H. Kim, and J. Eckert, “Internal state modulation-mediated plasticity enhancement in monolithic Ti-based bulk metallic glass,” Intermetallics 29, 7074 (2012).
4.J.M. Park, K.R. Lim, E.S. Park, S. Hong, K.H. Park, J. Eckert, and D.H. Kim, “Internal structural evolution and enhanced tensile plasticity of Ti-based bulk metallic glass and composite via cold rolling,” J. Alloy. Compd. 615, S113S117 (2014).
5.J.W. Qiao, J.T. Zhang, F. Jiang, Y. Zhang, P.K. Liaw, Y. Ren, and G.L. Chen, “Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures,” Mater. Sci. Eng. A 527, 77527756 (2010).
6.M. Calin, L.C. Zhang, and J. Eckert, “Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy,” Scr. Mater. 57, 11011104 (2007).
7.M. Naka, K. Hashimoto, and T. Masumoto, “Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys,” J. Non-Cryst. Solids 30, 2936 (1978).
8.J.H. Hsieh, A.L.K. Tan, and X.T. Zeng, “Oxidation and wear behaviors of Ti-based thin films,” Surf. Coat. Technol. 201, 40944098 (2006).
9.B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S.P. Hannula, A. Leyland, and A. Matthews, “Corrosion performance of some titanium-based hard coatings,” Surf. Coat. Technol. 49, 489495 (1991).
10.S.Y. Kim, S.S. Jee, K.R. Lim, W.T. Kim, D.H. Kim, E.S. Lee, Y.H. Kim, S.M. Lee, J.H. Lee, and J. Eckert, “Replacement of oxide glass with metallic glass for Ag screen printing metallization on Si emitter,” Appl. Phys, Lett. 98, 222112 (2011).
11.H.J. Jun, K.S. Lee, and Y.W. Chang, “Deformation behavior and formability of a Ti-Zr-Ni-Be bulk metallic glass within supercooled liquid region,” Intermetallics 18, 15371543 (2010).
12.K. Amiya, N. Nishiyama, A. Inoue, and T. Masumoto, “Mechanical strength and thermal stability of Ti-based amorphous alloys with large glass forming ability,” Mater. Sci. Eng. A 179/180, 692696 (1994).
13.T. Zhang and A. Inoue, “Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization,” Mater. Trans., JIM 39, 10011006 (1998).
14.M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, and A.D. Taylor, “Bulk Metallic Glass Nanowire architecture for electrochemical applications,” ACS Nano 5, 29792983 (2011).
15.X Liu, Y. Shao, J.F. Li, N. Chen, and K.F. Yao, “Large-area and uniform amorphous metallic nanowire arrays prepared by die nanoimprinting,” J. Alloy. Compd. 605, 711 (2014).
16.S.Y. Kim, S.J. Kim, S.S. Jee, J.M. Park, K.H. Park, S.C. Park, E.A. Cho, J.H. Lee, I.Y. Song, S.M. Lee, I.T. Han, K.R. Lim, W.T. Kim, J.C. Park, J. Echert, D.H. Kim, and E.S. Lee, “Capillary flow of amorphous metal for high performance electrode,” SCI. REP. 3, 2185 (2013).
17.S.J. Kim, S.Y. Kim, J.M. Park, J.N. Heo, J.H. Lee, S.M. Lee, D.H. Kim, W.T. Kim, K.R. Lim, D. Kim, S.C. Park, H.K. Kim, M.C. Song, J. Park, S.S. Jee, and E.S. Lee, “Exploiting metallic glasses for 19.6% efficient back contact solar cell,” Appl. Phys. Lett. 101, 064106 (2012).
18.S.J. Kim, S.Y. Kim, J.M. Park, K.H. Park, J.H. Lee, S.M. Lee, I.T. Han, D.H. Kim, K.R. Lim, W.T. Kim, J.C. Park, S.S. Jee, and E.S. Lee, “Thermal decomposition of silver acetate in silver paste for solar cell metallization: An effective route to reduce contact resistance,” Appl. Phys. Lett. 103, 063903 (2013).
19.S.S. Jee, S.Y. Kim, S.J. Kim, J.M. Park, K.H. Lee, J.H. Lee, K.H. Park, J.N. Heo, S.M. Lee, I.T. Han, K.R. Lim, W.T. Kim, D.H. Kim, and E.S. Lee, “Enhancement of electrical conductivity of thick silver electrode using a tailored amorphous alloy,” Appl. Phys. Lett. 101, 084104 (2012).
20.D. Wang, Y. Huang, and J. Shen, “Thermodynamic characteristics of Ti-based glass-forming alloys,” J. Non-Cryst. Solids 355, 986990 (2009).
21.F. Guo, H.J. Wang, S.J. Poon, and G.J. Shiflet, “Ductile titanium-based glassy alloy ingots,” Appl. Phys. Lett. 86, 091907 (2005).
22.S.L. Zhu, X.M. Wang, F.X. Qin, and A. Inoue, “A new Ti-based bulk glassy alloy with potential for biomedical application,” Mater. Sci. Eng. A 459, 233237 (2007).
23.S. Zhu, X. Wang, F. Qin, and A. Inoue, “Glass-Forming Ability and Thermal Stability of Ti–Zr–Cu–Pd–Si Bulk Glassy Alloys for Biomedical Applications,” Mater. Trans., JIM 48, 163166 (2007).
24.S.H. Park, K.R. Lim, M.Y. Na, K.C. Kim, W.T. Kim, and D.H. Kim, “Oxidation behavior of Ti-Cu binary metallic glass,” Corros. Sci. 99, 304312 (2015).
25.C.L. Chu, S.K. Wu, and Y.C. Yen, “Oxidation behavior of equiatomic TiNi alloy in high temperature air environment,” Mat. Sci. Eng. A 216, 193200 (1996).
26.K.M. Kim, J.T. Yeom, H.S. Lee, S.Y. Yoon, and J.H. Kim, “High temperature oxidation behavior of Ti-Ni-Hf shape memory alloy,” Thermochim. Acta 583, 17 (2014).
27.T. Spassov, N. Neykov, W. Jung, and A. Vassileva, “High-temperature oxidation of Cu-Ti-based rapidly solidified alloys,” Int. J. Mater. Res. 94, 134138 (2003).
28.M. Zhang, D. Yao, X. Wang, and L. Deng, “Air oxidation of a Zr55Cu50 Al10Ni5 bulk metallic glass at its super cooled liquid state,” Corros. Sci. 82, 410419 (2014).
29.W. Kai, Y.R. Chen, T.H Development of plastic. Ho, H.H. Hsieh, D.C. Qiao, F. Jiang, G. Fan, and P.K. Liaw, “Air oxidation of a Zr58Cu22Al12Fe8 bulk metallic glass at 350-550oC,” J. Alloy. Compd. 483, 519525 (2009).
30.W. Kai, P.C. Kao, W.S. Chen, C.L. Lin, Z.H. Xiao, C.F. Hsu, and P.Y. lee, “The oxidation behavior of a Ti50Cu28Ni15Sn7 bulk metallic glass at 400-500oC,” J. Alloy. Compd. 504, S180S185 (2010).
31.H.S. Wang, W.H. Li, M.H. Wu, H.G. Chen, J.S.C. Jang, and D.Y. Lin, “The oxidation behavior of a novel Ni-free Zr-Cu-based bulk metallic glass composite in the supercooled liquid and crystallization states,” Intermetallics 53, 3439 (2014).
32.K.R. Lim, W.T. Kim, E.S. Lee, D.H. Kim, A. Gebert, and J. Eckert, “Oxidation resistance of the supercooled liquid in Cu50Zr50 and Cu46Zr46Al8 metallic glasses,” J. Mater. Res. 27, 11781186 (2012).
33.K.R. Lim, J.M. Park, S.J. Kim, E.S. Lee, W.T. Kim, A. Gebert, J. Eckert, and D.H. Kim, “Enhancement of oxidation resistance of the supercooled liquid in Cu-Zr-based metallic glass by forming an amorphous oxide layer with high thermal stability,” Corros. Sci. 66, 14 (2013).
34.K.R. Lim, J.M. Park, S.S. Jee, S.Y. Kim, S.J. Kim, E.S. Lee, W.T. Kim, A. Gebert, J. Echert, and D.H. Kim, “Effect of thermal stability of the amorphous substrate on the amorphous oxide growth on Zr-Al-(Cu,Ni) metallic glass surfaces,” Corros. Sci. 73, 16 (2013).
35.K.R. Lim, J.M. Park, S.H. Park, M.Y. Na, K.C. Kim, W.T. Kim, and D.H. Kim, “Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass,” Appl. Phys. Lett. 104, 031604 (2014).
36.K.C. Kim, K.R. Lim, S.H. Park, M.Y. Na, W.T. Kim, and D.H. Kim, “Formation of amorphous oxide in Al82Ni13Zr5 and Al88Ni7Ca5 alloys,” Corros. Sci. 88, 209214 (2014).
37.K.C. Kim, K.R. Lim, E.S. Lee, W.T. Kim, and D.H. Kim, “Thermal stability of amorphous oxide in Al87Ni3Y 10 metallic glass,” Corros. Sci. 77, 15 (2013).
38.F. Reichel, L.P.H. Jeurgens, and E.J. Mittemeijer, “The thermodynamic stability of amorphous oxide overgrowths on metals,” Acta Mater. 56, 659674 (2008).
39.S.H. Park, K.R. Lim, M.Y. Na, K.C. Kim, W.T. Kim, and D.H. Kim, “Effect of minor addition of Zr on the oxidation behavior of Ti-Cu metallic glasses,” submitted to oxidation of metals (2015).
40.J.J. Oak, D.V. Louzguine-Luzgin, and A. Inoue, “Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants,” Mat. Sci. Eng. C 29, 322327 (2009).
41.J. Xin-lin and P. Ye, “A thermodynamic approach to assess glass-forming ability of bulk metallic glasses,” Trans. Nonferrous Met. Soc. China 19, 12711279 (2009).
42.T.R. Anantharaman, “Metallic glasses production, properties and applications,” Materials Science Surveys No. 2 (TRANS TECH PIBLICATIONS, Switzerland-Germany-UK-USA, 1984).
43.A. Takeuchi and A. Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element,” Mater. Trans., JIM 46, 28172829 (2005).
44.U. Troitzsch and D.J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci. 40, 45714577 (2005).
45.H.H. Hsieh, W. Kai, L. Jang, R.T. Huang, P.Y. Lee, and W.H. Wang, “The oxidation behavior of Cu-Zr-Ti-base bulk metallic glasses in air at 350∼500°C,” Oxid. Met. 67, 179192 (2007).
46.U. Koster, L. Jastrow, and M. Meuris, “Oxidation of Cu60Zr30Ti10 metallic glasses,” Mater. Sci. Eng. A 449-451, 165168 (2007).
47.A.D. Beukel and J. Sietsma, “The glass transition as a free volume related kinetic phenomenon,” Acta Mater. 38, 383389 (1990).
48.W. Xia, C. Lindahl, J. Lausmaa, and H. Engqvist, “Biomimetic hydroxyapatite deposition on titanium oxide surfaces for biomedical application,” Advances in Biomimetics (2011).
49.G.P. Kelkar, K.E. Spear, and A.H. Carim, “Thermodynamic evaluation of reaction products and layering in brazed alumina joints,” J. Mater. Res. 9, 22442250 (1994).
50.E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase diagrams for ceramists, 1969 Supplement (American Ceramic Society, Columbus, Ohio, 1969).
51.T. Egami and Y. Waseda, “Atomic size effect on the formability of metallic glasses,” J. Non-Cryst. Solids 64, 113134 (1984).
52.P. Kofstad, K. Hauffe, and H. Kjollesdal, “Investigation on the oxidation mechanism of titanium,” Acta Chem. Scand. 12, 239266 (1958).
53.G.R. Wallwork and A.E. Jenkins, “Oxidation of Titanium, Zirconium and Hafnium,” J. Electrochem. Soc. 106, 1014 (1959).
54.S.R. Elliott, Physics of amorphous materials, second ed. (Longman Scientific & Technical, University of Cambridge, 1990).
55.H.H. Hsieh, W. Kai, R.T. Huang, C.Y. Lin, and T.S. Chin, “Air oxidation of an Fe72B22Y 6 bulk amorphous alloy at 600-700°C,” Intermetallics 14, 917923 (2006).

Data & Media loading...


Article metrics loading...



The oxidation behavior of Ti Cu ZrBe metallic glass has been investigated. The oxide layer with a fully amorphous structure forms when heated up to the SCL temperature region, indicating that the presence of Be in the oxide layer improves the thermal stability of the amorphous oxide. The amorphous oxide is stable even when heated above the crystallization onset temperature. The thickness of the amorphous oxide layer reaches to ∼160 nm when heated up to 773 K. The oxide layer grows in both inward and outward directions, leaving Cu-enriched crystalline particles at the middle section of the oxide layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd