Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. S. Saidina, A. Norshamira, and M. Mariatti, J. Mater. Sci.-Mater. Electron. 26, 8118 (2015).
2.M. Zirkl, A. Haase, A. Fian, H. Schon, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwodiauer, S. Bauer-Gogonea, and S. Bauer, Adv. Mater. 19, 2241 (2007).
3.Y. Sharma, P. Misra, S. P. Pavunny, and R. S. Katiyar, Appl. Phys. Lett. 104, 073501 (2014).
4.S. Sung, S. Park, W. J. Lee, J. Son, C. H. Kim, Y. Kim, D. Y. Noh, and M. H. Yoon, ACS Appl. Mater. Interfaces. 7, 7456 (2015).
5.Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. H. Li, and J. B. Bai, Adv. Funct. Mater. 18, 1517 (2008).
6.P. H. Hu, Y. Shen, Y. H. Guan, X. H. Zhang, Y. H. Lin, Q. M. Zhang, and C. W. Nan, Adv. Funct. Mater. 24, 3178 (2014).
7.Q. G. Chi, J. F. Dong, G. Y. Liu, Y. Chen, X. Wang, and Q. Q. Lei, Ceram. Int. 41, 15116 (2015).
8.W. H. Yang, S. H. Yu, R. Sun, and R. X. Du, Acta Mater. 59, 5602 (2011).
9.X. Y. Huang and P. K. Jiang, Adv. Mater. 27, 546 (2015).
10.H. X. Tang, Z. Zhou, and H. A. Sodano, Appl. Mater. Interfaces 6, 5455 (2014).
11.B. C. Luo, X. H. Wang, Q .C. Zhao, and L. T. Li, Compos. Sci. Technol. 112, 1 (2015).
12.B. C. Luo, X. H. Wang, Y. P. Wang, and L. T. Li, J. Mater. Chem. A 2, 510 (2014).
13.Z. M. Dang, T. Zhou, S. H. Yao, J. K. Yuan, J. W. Zha, H. T. Song, J. Y. Li, Q. Chen, W. T. Yang, and J. B. Bai, Adv. Mater. 21, 2077 (2009).
14.L. Zhang, X. Shan, P. Wu, and Z. Y. Cheng, Appl. Phys. A 107, 597 (2012).
15.Q. G. Chi, J. Sun, C. H. Zhang, G. Liu, J. Q. Lin, Y. N. Wang, X. Wang, and Q. Q. Lei, J. Mater. Chem. C 2, 172 (2014).
16.Y. Feng, W. L. Li, J. P. Wang, J. H. Yin, and W. D. Fei, J. Mater. Chem. A 3, 20313 (2015).
17.S. Rajesh, K. Sonoda, A. Unsimaki, K. H. Yang, H. Y. Lu, and H. Jantunen, J. Mater. Sci: Mater. Electrom. 24, 191 (2014).
18.Y. Yang, H. L. Sun, D. Yin, Z. H. Lu, J. H. Wei, R. Xiong, J. Shi, Z. Y. Wang, Z. Y. Liu, and Q. Q. Lei, J. Mater. Chem. A 3, 4916 (2015).
19.S. B. Luo, S. H. Yu, R. Sun, and C. P. Wong, App. Mater. Interfaces 6, 176 (2014).
20.C. W. Nan, Y. Shen, and J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010).
21.Q. G. Chi, L. Gao, X. Wang, J. Q. Lin, J. Sun, and Q. Q. Lei, J. Alloy. Compd. 559, 45 (2013).
22.Q. G. Chi, C. H. Zhang, X. Wang, J. Sun, L. Gao, X. Wang, and Q. Q. Lei, Ceram. Int. 40, 15045 (2014).
23.X. Wang, L. Gao, Q. G. Chi, C. X. Yu, and Q. Q. Lei, IEEE T. Dielect. El. In. 21, 1471 (2014).
24.Y. J. Chen, M. S. Cao, Q Xu, and J. Zhu, Surf. Coat. Tech. 172, 90 (2003).
25.S. Haag, M. Burgard, and B. Ernst, Surf. Coat. Tech. 201, 2166 (2006).
26.D. Zhang, X. Wang, L. J. He, W. Song, Z. Sun, B. Han, J. X. Li, and Q. Q. Lei, J. Mater. Sci: Mater. Electron. 24, 1796 (2013).
27.M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 232 (2000).
28.M. A. Subramanian and A. W. Sleight, Solid State Sci. 4, 347 (2002).
29.P. Tomas, K. T. Varughese, K. Dwarakanath, and K. B. R. Varma, Compos. Sci. Technol. 70, 539 (2010).
30.B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test. 26, 42 (2007).
31.J. S. Andrew and D. R. Clarke, Langmuir 24, 670 (2008).
32.E. Q. Huang, J. Zhao, J. W. Zha, L. Zhang, R. J. Liao, and Z. M. Dang, J. Appl. Phys. 115, 194102 (2014).
33.G. L. Li, T. He, and X. M. Li, Prog. Chem. 23, 1081 (2011).
34.L. Gao, X. Wang, Y. Chen, Q. G. Chi, and Q. Q. Lei, AIP Adv. 5, 087183 (2015).
35.Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, J. Mater. Chem. C 3, 1250 (2015).

Data & Media loading...


Article metrics loading...



Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCuTiO core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 104 at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd