Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935270
1.
1.D. S. Saidina, A. Norshamira, and M. Mariatti, J. Mater. Sci.-Mater. Electron. 26, 8118 (2015).
http://dx.doi.org/10.1007/s10854-015-3471-8
2.
2.M. Zirkl, A. Haase, A. Fian, H. Schon, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwodiauer, S. Bauer-Gogonea, and S. Bauer, Adv. Mater. 19, 2241 (2007).
http://dx.doi.org/10.1002/adma.200700831
3.
3.Y. Sharma, P. Misra, S. P. Pavunny, and R. S. Katiyar, Appl. Phys. Lett. 104, 073501 (2014).
http://dx.doi.org/10.1063/1.4865802
4.
4.S. Sung, S. Park, W. J. Lee, J. Son, C. H. Kim, Y. Kim, D. Y. Noh, and M. H. Yoon, ACS Appl. Mater. Interfaces. 7, 7456 (2015).
http://dx.doi.org/10.1021/acsami.5b00281
5.
5.Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. H. Li, and J. B. Bai, Adv. Funct. Mater. 18, 1517 (2008).
http://dx.doi.org/10.1002/adfm.200701077
6.
6.P. H. Hu, Y. Shen, Y. H. Guan, X. H. Zhang, Y. H. Lin, Q. M. Zhang, and C. W. Nan, Adv. Funct. Mater. 24, 3178 (2014).
7.
7.Q. G. Chi, J. F. Dong, G. Y. Liu, Y. Chen, X. Wang, and Q. Q. Lei, Ceram. Int. 41, 15116 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.08.083
8.
8.W. H. Yang, S. H. Yu, R. Sun, and R. X. Du, Acta Mater. 59, 5602 (2011).
9.
9.X. Y. Huang and P. K. Jiang, Adv. Mater. 27, 546 (2015).
http://dx.doi.org/10.1002/adma.201401310
10.
10.H. X. Tang, Z. Zhou, and H. A. Sodano, Appl. Mater. Interfaces 6, 5455 (2014).
11.
11.B. C. Luo, X. H. Wang, Q .C. Zhao, and L. T. Li, Compos. Sci. Technol. 112, 1 (2015).
http://dx.doi.org/10.1016/j.compscitech.2015.02.018
12.
12.B. C. Luo, X. H. Wang, Y. P. Wang, and L. T. Li, J. Mater. Chem. A 2, 510 (2014).
http://dx.doi.org/10.1039/C3TA14107A
13.
13.Z. M. Dang, T. Zhou, S. H. Yao, J. K. Yuan, J. W. Zha, H. T. Song, J. Y. Li, Q. Chen, W. T. Yang, and J. B. Bai, Adv. Mater. 21, 2077 (2009).
http://dx.doi.org/10.1002/adma.200803427
14.
14.L. Zhang, X. Shan, P. Wu, and Z. Y. Cheng, Appl. Phys. A 107, 597 (2012).
http://dx.doi.org/10.1007/s00339-012-6836-3
15.
15.Q. G. Chi, J. Sun, C. H. Zhang, G. Liu, J. Q. Lin, Y. N. Wang, X. Wang, and Q. Q. Lei, J. Mater. Chem. C 2, 172 (2014).
http://dx.doi.org/10.1039/C3TC31757A
16.
16.Y. Feng, W. L. Li, J. P. Wang, J. H. Yin, and W. D. Fei, J. Mater. Chem. A 3, 20313 (2015).
http://dx.doi.org/10.1039/C5TA04777C
17.
17.S. Rajesh, K. Sonoda, A. Unsimaki, K. H. Yang, H. Y. Lu, and H. Jantunen, J. Mater. Sci: Mater. Electrom. 24, 191 (2014).
http://dx.doi.org/10.1007/s10854-012-0707-8
18.
18.Y. Yang, H. L. Sun, D. Yin, Z. H. Lu, J. H. Wei, R. Xiong, J. Shi, Z. Y. Wang, Z. Y. Liu, and Q. Q. Lei, J. Mater. Chem. A 3, 4916 (2015).
http://dx.doi.org/10.1039/C4TA05673F
19.
19.S. B. Luo, S. H. Yu, R. Sun, and C. P. Wong, App. Mater. Interfaces 6, 176 (2014).
http://dx.doi.org/10.1021/am404556c
20.
20.C. W. Nan, Y. Shen, and J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104529
21.
21.Q. G. Chi, L. Gao, X. Wang, J. Q. Lin, J. Sun, and Q. Q. Lei, J. Alloy. Compd. 559, 45 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.01.090
22.
22.Q. G. Chi, C. H. Zhang, X. Wang, J. Sun, L. Gao, X. Wang, and Q. Q. Lei, Ceram. Int. 40, 15045 (2014).
http://dx.doi.org/10.1016/j.ceramint.2014.06.110
23.
23.X. Wang, L. Gao, Q. G. Chi, C. X. Yu, and Q. Q. Lei, IEEE T. Dielect. El. In. 21, 1471 (2014).
http://dx.doi.org/10.1109/TDEI.2014.004302
24.
24.Y. J. Chen, M. S. Cao, Q Xu, and J. Zhu, Surf. Coat. Tech. 172, 90 (2003).
http://dx.doi.org/10.1016/S0257-8972(03)00320-7
25.
25.S. Haag, M. Burgard, and B. Ernst, Surf. Coat. Tech. 201, 2166 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2006.03.023
26.
26.D. Zhang, X. Wang, L. J. He, W. Song, Z. Sun, B. Han, J. X. Li, and Q. Q. Lei, J. Mater. Sci: Mater. Electron. 24, 1796 (2013).
http://dx.doi.org/10.1007/s10854-012-1014-0
27.
27.M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 232 (2000).
http://dx.doi.org/10.1006/jssc.2000.8703
28.
28.M. A. Subramanian and A. W. Sleight, Solid State Sci. 4, 347 (2002).
http://dx.doi.org/10.1016/S1293-2558(01)01262-6
29.
29.P. Tomas, K. T. Varughese, K. Dwarakanath, and K. B. R. Varma, Compos. Sci. Technol. 70, 539 (2010).
http://dx.doi.org/10.1016/j.compscitech.2009.12.014
30.
30.B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test. 26, 42 (2007).
http://dx.doi.org/10.1016/j.polymertesting.2006.08.003
31.
31.J. S. Andrew and D. R. Clarke, Langmuir 24, 670 (2008).
http://dx.doi.org/10.1021/la7035407
32.
32.E. Q. Huang, J. Zhao, J. W. Zha, L. Zhang, R. J. Liao, and Z. M. Dang, J. Appl. Phys. 115, 194102 (2014).
http://dx.doi.org/10.1063/1.4876748
33.
33.G. L. Li, T. He, and X. M. Li, Prog. Chem. 23, 1081 (2011).
34.
34.L. Gao, X. Wang, Y. Chen, Q. G. Chi, and Q. Q. Lei, AIP Adv. 5, 087183 (2015).
http://dx.doi.org/10.1063/1.4930075
35.
35.Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, J. Mater. Chem. C 3, 1250 (2015).
http://dx.doi.org/10.1039/C4TC02183E
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935270
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935270
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935270
2015-11-02
2016-12-04

Abstract

Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCuTiO core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 104 at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935270.html;jsessionid=kgwM8Y-XuBRm4mxsnoxPywdK.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935270&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935270&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935270'
Right1,Right2,Right3,