Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935339
1.
1.M. Rosen, Surfactants and Interfacial Phenomena (Wiley-Interscience, 2004).
2.
2.R. Zhang and P. Somasundaran, Adv Colloid Interfac 123–126(0), 213-229 (2006).
http://dx.doi.org/10.1016/j.cis.2006.07.004
3.
3.J. Yang, Curr Opin Colloid In 7(5–6), 276-281 (2002).
http://dx.doi.org/10.1016/S1359-0294(02)00071-7
4.
4.M. D. Elola and J. Rodriguez, Langmuir 29(44), 13379-13387 (2013).
http://dx.doi.org/10.1021/la402683j
5.
5.B. Cai, X. Li, Y. Yang, and J. Dong, J. Colloid Interface Sci. 370(1), 111-116 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.12.025
6.
6.Z. Q. Li, L. Wang, X. L. Cao, X. W. Song, L. Zhang, S. Zhao, and J. Y. Yu, J. Dispersion Sci. Technol. 30(1), 65-67 (2009).
http://dx.doi.org/10.1080/01932690802480417
7.
7.X. H. Cui, L. Wang, X. L. Cao, F. L. Zhao, L. Luo, L. Zhang, S. Zhao, and J. Y. Yu, J. Dispersion Sci. Technol. 29(8), 1153-1157 (2008).
http://dx.doi.org/10.1080/01932690701817990
8.
8.E. Khurana, S. O. Nielsen, and M. L. Klein, J. Phys. Chem. B 110(44), 22136-22142 (2006).
http://dx.doi.org/10.1021/jp063343d
9.
9.M. Petrov, B. Minofar, L. Vrbka, P. Jungwirth, P. Koelsch, and H. Motschmann, Langmuir 22(6), 2498-2505 (2006).
http://dx.doi.org/10.1021/la0532095
10.
10.S. Bandyopadhyay and J. Chanda, Langmuir 19(24), 10443-10448 (2003).
http://dx.doi.org/10.1021/la0348315
11.
11.W. Sun, Y. Bu, and Y. Wang, J. Phys. Chem. B 112(48), 15442-15449 (2008).
http://dx.doi.org/10.1021/jp804965x
12.
12.J. De León, B. Hoyos, and W. Cañas-Marín, Dyna 82(189), 39-44 (2015).
http://dx.doi.org/10.15446/dyna.v82n189.41963
13.
13.X. L. Mao, X. F. Song, G. M. Lu, Y. X. Xu, Y. Z. Sun, and J. G. Yu, Chem. Eng. J. 278, 320-327 (2015).
http://dx.doi.org/10.1016/j.cej.2014.10.006
14.
14.L. Shi, N. R. Tummala, and A. Striolo, Langmuir 26(8), 5462-5474 (2010).
http://dx.doi.org/10.1021/la904615u
15.
15.H. Yan, X.L. Guo, S.-L. Yuan, and C.B. Liu, Langmuir 27(10), 5762-5771 (2011).
http://dx.doi.org/10.1021/la1049869
16.
16.W.-X. Shi and H.-X. Guo, J. Phys. Chem. B 114(19), 6365-6376 (2010).
http://dx.doi.org/10.1021/jp100868p
17.
17.J. L. Rivera, C. McCabe, and P. T. Cummings, Phys Rev E, Statistical, nonlinear, and soft matter physics 67(1 Pt 1), 011603 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.011603
18.
18.X. B. He, O. Guvench, A. D. MacKerell, and M. L. Klein, J. Phys. Chem. B 114(30), 9787-9794 (2010).
http://dx.doi.org/10.1021/jp101860v
19.
19.L. Q. Zhang and M. L. Greenfield, Energy Fuels 21(2), 1102-1111 (2007).
http://dx.doi.org/10.1021/ef060449z
20.
20.C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, J. Comput Chem. 25(13), 1656-1676 (2004).
http://dx.doi.org/10.1002/jcc.20090
21.
21.D. M. York, T. A. Darden, and L. G. Pedersen, J. Chem. Phys. 99(10), 8345-8348 (1993).
http://dx.doi.org/10.1063/1.465608
22.
22.Y. Cao, R. H. Zhao, L. Zhang, Z. C. Xu, Z. Q. Jin, L. Luo, L. Zhang, and S. Zhao, Energy Fuels 26(4), 2175-2181 (2012).
http://dx.doi.org/10.1021/ef201982s
23.
23.Y. Li, Y. Guo, M. Bao, and X. Gao, J. Colloid Interface Sci. 361, 573-580 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.05.078
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935339
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935339
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935339
2015-11-03
2016-09-29

Abstract

A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935339.html;jsessionid=452nbHbkZ8T_8F-gcg_5d2Kh.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935339&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935339&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935339'
Right1,Right2,Right3,