Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, Nature 479, 338 (2011).
2.X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature 462, 192 (2009).
3.K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Nature 462, 196 (2009).
4.G. X. Ni, H. Z. Yang, W. Ji, S. J. Baeck, C. T. oh, J. H. Ahn, V. M. Pereira, and B. Özyilmaz, Adv. Mater. 26, 1081 (2014).
5.P. Goli, H. Ning, X. S. Li, C. Y. Lu, K. S. Novoselov, and A. A. Balandin, Nano Lett. 14, 1497 (2014).
6.S. Ghosh, W. Z. Bao, D. Nika, S. Subrina, E. P. Polatilov, C. N. Lau, and A. A. Balandin, Nature Mater. 9, 555 (2010).
7.C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
8.A. N. Abbas, G. Liu, B. L. Liu, L. Y. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. W. Zhou, ACS nano 8, 1538 (2014).
9.J. Luo, P. Tian, C. T. Pan, A. W. Robertson, J. H. Warner, E. W. Hill, and G. A. D. Briggs, ACS Nano 5, 1047 (2011).
10.J. M. Yun, S. Park, Y. H. Hwang, E. S. Lee, U. Maiti, H. Moon, B. H. Kim, B. S. Bae, Y. H. Kim, and S. O. Kim, ACS Nano 8, 650 (2014).
11.Y. C. Yang, J. H. Lee, S. Lee, C. H. Liu, Z. H. Zhong, and W. Lu, Adv. Mater. 26, 3693 (2014).
12.W. S. Leong, H. Gong, and J. T. L. Thong, ACS Nano 8, 994 (2014).
13.C. Bock, S. Weingart, E. Karaissaridis, U. Kunze, F. Speck, and T. Seyller, Nanotechnology 23, 395203 (2012).
14.C. C. Lin, Y. F. Gao, A. V. Penumatcha, V. Q. Diep, J. Appenzeller, and Z. H. Chen, ACS Nano 8, 3807 (2014).
15.J. Mohrmann, K. Watanabe, T. Taniguch, and R. Danneau, Nanotechnology 26, 015202 (2015).
16.J. T. Kim, J. Kim, H. Choi, C. G. Choi, and S. Y. Choi, Nanotechnology 23, 344005 (2012).
17.F. Hao, D. N. Fang, and Z. P. Xu, Appl. Phys. Lett. 99, 041901 (2011).
18.L. C. He, S. S. Guo, J. C. Lei, Z. D. Sha, and Z. S. Liu, Carbon 75, 124 (2014).
19.L. Q. Xu, N. Wei, and Y. P. Zheng, Nanotechnology 24, 505703 (2013).
20.W. Lee, S. Suzuki, and M. Miyayama, Electrochim. Acta 142, 240 (2014).
21.J. Silva-Araújo, A. J. M. Nascimento, H. Chacham, and R. W. Nunes, Nanotechnology 24, 035708 (2013).
22.N. Gorjizaden, A. A. Farajian, and Y. Kawazoe, Nanotechnology 20, 015201 (2009).
23.M. Manoharan and H. Mizuta, Carbon 64, 416 (2013).
24.J. Y. Hwang, C. C. Kuo, L. C. Chen, and K. H. Chen, Nanotechnology 21, 465705 (2010).
25.Y. Hajati, T. Blom, S. H. M. Jafri, S. Haldar, S. Bhandary, M. Z. Shoushtari, O. Eriksson, B. Sanyal, and K. Leifer,Nanotechnology 23, 505501 (2012).
26.P. Rani and R. Bhandari, in Proceeding of the ‘International conference on Advanced nanomaterials & emerging engineering technologies’ (ICANMEET-2013) (2013).
27.S. H. Tan, L. M. Tang, Z. X. Xie, C. N. Pan, and K. Q. Chen, Carbon 65, 181 (2013).
28.C. B. Xie, R. Yang, P. Chen, J. Zhang, X. Z. Tian, S. Wu, J. Zhao, M. Cheng, W. Yang, D. M. Wang, C. L. He, X. D. Bai, D. X. Shi, and G. Y. Zhang, Small 10, 2280 (2014).
29.J. Hu and R. Q. Wu, Nano Lett. 14, 1853 (2014).
30.Y. P. Hsieh, M. Hofmann, K. W. Chang, J. G. Jhu, Y. Y. Li, K. Y. Chen, C. C. Yang, W. S. Chang, and L. C. Chen, ACS Nano 8, 443 (2014).
31.A. Nojeh, B. Shan, K. Cho, and R. F. W. Pease, Phys. Rev. Lett. 96, 056802 (2006).
32.H. P. Yang, C. Y. Yam, A. H. Zhang, Z. P. Xu, J. Luo, and J. Zhu, Phys. Chem. Chem. Phys. 17, 7248 (2015).
33.J. Luo, L. M. Peng, Z. Q. Xue, and J. L. Wu, Phys. Rev. B 66, 115415 (2002).
34.M. K. Shukla, M. Dubey, and J. Leszczynski, ACS Nano 2, 227 (2008).
35.J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, and J. R. Cheeseman, Gaussian 09, revision B.01. Wallingford CT: Gaussian Inc. (2010).
36.A. D. Becke, J Chem. Phys. 98, 5648 (1993).
37.C. Lee, W. Yang, and P. G. Parr, Phys. Rev. B 37, 785 (1988).
38.R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J Chem. Phys. 72, 650 (1980).
39.A. W. Robertson, C. S. Allen, Y. M. A. Wu, K. He, J. Olivier, J. Neethling, A. I. Kirkland, and J. H. Warner, Nat. Commun. 3, 1144 (2012).
40.T. Takahashi, H. Tokailin, and T. Sagawa, Phys. Rev. B 32, 8317 (1985).
41.J. H. Kim, J. H. Hwang, J. Suh, S. Tongay, S. Kwon, C. C. Hwang, J. Q. Wu, and J. Y. Park, Appl. Phys. Lett. 103, 171604 (2013).
42.Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, and K. S. Kim, Nano Lett. 9, 3430 (2008).
43.A. W. Robertson and J. H. Warner, Nanoscale 5, 4079 (2013).

Data & Media loading...


Article metrics loading...



Defects are capable of modulating various properties of graphene, and thus controlling defects is useful in the development of graphene-based devices. Here we present first-principles calculations, which reveal a new avenue for defect engineering of graphene: the modulation by defects on the highest occupied molecular orbital (HOMO) energy of a charged monolayer graphene quantum dot (GQD) is discriminative. When the charge of a GQD increases its HOMO energy also increases. Importantly, when the GQD contains one particular class of defects its HOMO energy is sometimes higher and sometimes lower than that of the corresponding GQD without any defects, but when the GQD contains another class of defects its HOMO energy is always higher or lower than that of the corresponding intact GQD as its excess charge reaches a critical value. This discriminative modulation could allow defect engineering to control secondary electron ejection in graphene, leading to a new way to develop graphene-based devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd