Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935437
1.
1.S.S. Parkin, H. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
2.
2.C.A. Ross, H.I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M.C. Abram, and R.J. Ram, J. Vac. Sci. Technol. B 17, 3168 (1999).
http://dx.doi.org/10.1116/1.590974
3.
3.N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341, 636 (2013).
http://dx.doi.org/10.1126/science.1240573
4.
4.K. Y. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).
5.
5.R. Antos, Y. Otani, and J. Shibata, J. Phas. Soc. Jpn. 77, 031004 (2008).
http://dx.doi.org/10.1143/JPSJ.77.031004
6.
6.G. Mihajlovic, M. S. Patrick, J. E. Pearson, V. Novosad, S.D. Bader, M Field, G.J. Sullivan, and A. Hoffmann, Appl. Phys. Lett. 96, 112501 (2010).
http://dx.doi.org/10.1063/1.3360841
7.
7.R. Zarzuela, S. Vélez, J. M. Hernandez, J. Tejada, and V. Novosad, Phys. Rev. B 85, 180401(R (2012).
http://dx.doi.org/10.1103/PhysRevB.85.180401
8.
8.J.G.S. Lok, A.K. Geim, J.C. Maan, S.V. Dubonos, L. Theil-Kuhn, and P.E. Lindelof, Phys. Rev. B 58, 12201 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12201
9.
9.H. Ding, A. K. Schmid, D. Li, K. Yu. Guslienko, and S. D. Bader, Phys. Rev. Lett. 94, 157202 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.157202
10.
10.V. Cambel and G. Karapetrov, Phys. Rev. B 84, 014424 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014424
11.
11.J. Tóbik, V. Cambel, and G. Karapetrov, Phys. Rev. B 86, 134433 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134433
12.
12.V. Cambel, J. Tóbik, J. Šoltýs, J. Fedor, M. Precner, Š. Gaži, and G. Karapetrov, J. Magnetism Magnetic Mater. 336, 29 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.01.042
13.
13.J. Šoltýs, Š. Gaži, J. Fedor, J. Tóbik, M. Precner, and V. Cambel, Microelectr. Engn. 110, 474 (2013).
http://dx.doi.org/10.1016/j.mee.2013.04.031
14.
14.R. K. Dumas, T. Gredig, C. P. Li, I. K. Schuller, and K. Liu, Physical Review B 80, 014416 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014416
15.
15.T. M. Hengstmann, D. Grundler, Ch. Hezn, and D. Heintmann, J. Appl. Phys. 90, 6542 (2001).
http://dx.doi.org/10.1063/1.1413238
16.
16.M. Rahm, M. Schneider, J. Biberger, R. Pulwey, J. Zweck, D. Weiss, and V. Umansky, Appl. Phys. Lett. 82, 4110 (2003).
http://dx.doi.org/10.1063/1.1581363
17.
17.M. Rahm, R. Hoellinger, V. Umansky, and D. Weiss, J. Appl. Phys. 95, 6708 (2004).
http://dx.doi.org/10.1063/1.1667448
18.
18.M.J. Donahue and D.G. Porter, OOMMF User’s Guide, Version 1.0, Technical Report No. NISTIR 6376, National Inst. of Standards and Tech., Gaithersburg, MD (1999).
19.
19.A. J. Newell, W. Williams, and D.J. Dunlop, J. Geoph. Res. 98, 9551 (1993).
http://dx.doi.org/10.1029/93JB00694
20.
20.C. Abert, G. Selke, B. Krueger, and A. Drews, IEEE Trans. On Magnetics 48, 1105 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2172806
21.
21.T. Taniuchi, M. Oshima, H. Akinaga, and K. Ono, J. Appl. Phys. 97, 10J904 (2005).
http://dx.doi.org/10.1063/1.1862032
22.
22.M. Schneider, H. Hoffmann, and J. Zweck, Appl.Phys. Lett. 79, 3113 (2001).
http://dx.doi.org/10.1063/1.1410873
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935437
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935437
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935437
2015-11-04
2016-09-30

Abstract

We studied vortex nucleation/annihilation process and its temperature dependence in micromagnetic objects with lowered symmetry using micro-Hall magnetometry. Magnetization reversal curves were obtained for the Pacman-like nanodots placed directly on Hall probes. Lowered symmetry of the object leads to good control of its chirality. Vortex nucleation and annihilation fields strongly depend on the angle of the external in-plane magnetic field with respect on the nanodot symmetry. The micromagnetic simulations support the experimental results - the vortex nucleation fields are controlled by local magnetization configurations present in the object (C-, S-, and double S-states) for field just above vortex nucleation field. The experiments also confirm that the vortex nucleation proceeds via thermal activation over an energy barrier.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935437.html;jsessionid=on3wi3uBD8uIPtm1YHhJTgvb.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935437&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935437&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935437'
Right1,Right2,Right3,