Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935438
1.
1.K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, Jpn. J. Appl. Phys. 32, 5210 (1993).
http://dx.doi.org/10.1143/JJAP.32.5210
2.
2.J. Tominaga, T. Nakano, and N. Atoda, Appl. Phys. Lett. 73, 2078 (1998).
http://dx.doi.org/10.1063/1.122383
3.
3.T. Kikukawa, N. Fukuzawa, and T. Kobayashi, Jpn. J. Appl. Phys. 44, 3596 (2005).
http://dx.doi.org/10.1143/JJAP.44.3596
4.
4.J. Kim, I. Hwang, J. Bae, J. Lee, H. Park, I. Park, T. Kikukawa, N. Fukuzawa, T. Kobayashi, and J. Tominaga, Jpn. J. Appl Phys. 45, 1370 (2006).
http://dx.doi.org/10.1143/JJAP.45.1370
5.
5.M. Kuwahara, T. Shima, P. Fons, T. Fukaya, and J. Tominaga, J. Appl. Phys. 100, 043106 (2006).
http://dx.doi.org/10.1063/1.2227643
6.
6.K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, Jpn. J. Appl. Phys. 49, 08KE01 (2010).
7.
7.B. Hyot, Phys. Status Solidi B 249, 1992 (2012).
http://dx.doi.org/10.1002/pssb.201200341
8.
8.J. S. Kim, K. Kwak, and C. Y. You, Jpn. J. Appl. Phys. 47, 5845 (2008).
http://dx.doi.org/10.1143/JJAP.47.5845
9.
9.A. C. Assafrao, A. J. H. Wachters, S.F. Pereira, and H. P. Urbach, Jpn. J. Appl. Phys. 51, 112501 (2012).
http://dx.doi.org/10.7567/JJAP.51.112501
10.
10.H. Sano, T. Shima, M. Kuwahara, Y. Fujita, M. Uchiyama, and Y. Aono, J. Appl. Phys. 115, 153104 (2014).
http://dx.doi.org/10.1063/1.4871858
11.
11.M. Kuwahara, R. Endo, K. Tsutsumi, F. Morikasa, M. Suzuki, T. Shima, M. Susa, T. Endo, T. Tadokoro, and S. Hosaka, Appl. Phys. Express 6, 082501 (2013).
http://dx.doi.org/10.7567/APEX.6.082501
12.
12.J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.556
13.
13.M-Z. Huang and W. Y. Ching, Phys. Rev. B 47, 9449 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.9449
14.
14.S. H. Rhim, M. Kim, A. J. Freeman, and R. Asahi, Phys. Rev. B 71, 045202 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.045202
15.
15.Y-S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, Phys. Rev. B 82, 205212 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205212
16.
16.J. H. Los, T. D. Kühne, S. Gabardi, and M. Bernasconi, Phys. Rev. B 87, 184201 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184201
17.
17.L. Wang, X. S. Chen, Y. Huang, W. Lu, and J. J. Zhao, Physica B 405, 2481 (2010).
http://dx.doi.org/10.1016/j.physb.2010.03.017
18.
18.L. Wang, X. Chen, W. Lu, and J. Zhao, Solid State Commun. 149, 638 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.01.022
19.
19.T. Gu, X. Bian, J. Qin, and C. Xu, Phys. Rev. B 71, 104206 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.104206
20.
20.H. Sano and G. Mizutani, in Proceedings of the 26th Symposium on Phase Change Oriented Science, Hamamatsu, Japan, 4–5 December 2014. edited byT. Saiki (2014), p. 69.
21.
21.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
22.
22.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
23.
23.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
24.
24.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
25.
25.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
26.
26.F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
27.
27.M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045112
28.
28.Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology New Series Group III, edited by O. Madelung, M. Schuz, and H. Weiss (Springer-Verlag, Berlin, 1982), Vol. 17a, p. 315.
29.
29.S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
30.
30.Y. Sato, T. Nishizuka, T. Takamizawa, T. Yamarura, and Y. Waseda, Int. J. Thermophys. 23, 235 (2002).
http://dx.doi.org/10.1023/A:1013969430449
31.
31.I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
32.
32.R. T. Holm, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, New York, 1985), pp. 491-502.
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935438
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935438
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935438
2015-11-04
2016-09-25

Abstract

Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935438.html;jsessionid=J6vz95qM5yez_wHEhmfYFU9Q.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935438&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935438'
Right1,Right2,Right3,