Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935568
1.
1.A. Rajagopal, P. Fischer, E. Kuhl, and P. Steinmann, Comput. Mech. 46, 471-493 (2010).
http://dx.doi.org/10.1007/s00466-010-0490-4
2.
2.R. Abbaschian, L Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles (Cengage Learning, Stamford, 2010).
3.
3.M. P. Groover, Principles of Modern Manufacturing (John Wiley & Sons Inc., Singapore, 2013).
4.
4.M. Quirk and J. Serda, Semiconductor Manufacturing Technology (Pearson Education Taiwan Ltd., Taiwan, 2011).
5.
5.A. L. Stepanov, Rev. Adv. Mater. Sci. 26, 1-29 (2010).
6.
6.A. Meldrum, R. Lopez, R. H. Magruder, L. A. Boatner, and C. W. White, “Materials science with ion beams,” Topics Appl. Physics 116, 255-285 (2010).
http://dx.doi.org/10.1007/978-3-540-88789-8_9
7.
7.Y. Ramjauny, G. Rizza, S. Perruchas, T. Gacoin, and R. Botha, J. Appl. Phys. 107, 104303 (2010).
http://dx.doi.org/10.1063/1.3372745
8.
8.K. Janssens, D. Raabe, E. Kozeschnik, M. A. Miodownik, and B. Nestler, Computational Materials Engineering An Introduction to Microstructure Evolution (Elsevier Inc., 2007).
9.
9.A. J. Bray, Adv. Phys. 43, 357-459 (1994).
http://dx.doi.org/10.1080/00018739400101505
10.
10.J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258-267 (1958).
http://dx.doi.org/10.1063/1.1744102
11.
11.D. A. Porter, K. E. Easterling, and M. Y. Sherif, Phase Transformations in Metals and Alloys (CRC Press, New York, 2009).
12.
12.A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Rev. A 45, 7424-7439 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.7424
13.
13.R. Kobayashi, Physica D 63, 410-423 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90120-P
14.
14.J. J. Eggleston, G. B. McFadden, and P. W. Voorhees, Physica D 150, 91-103 (2001).
http://dx.doi.org/10.1016/S0167-2789(00)00222-0
15.
15.J. Kim, Commun. Korean Math. Soc. 22, 453-464 (2007).
http://dx.doi.org/10.4134/CKMS.2007.22.3.453
16.
16.G. B. McFadden, A. A. Wheeler, R. J. Braun, and S. R. Coriell, Phys. Rev. E 48, 2016-2024 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.2016
17.
17.A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323-4349 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.4323
18.
18.H. K. Lin, C. C. Chen, and C. W. Lan, J. Cryst. Growth 362, 62-65 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.01.004
19.
19.M. Nastasi, J. W. Mayer, and J. K. Hirvonen, Ion-Solid Interactions Fundamentals and applications (Cambridge University Press, New York, 1996).
20.
20.J. F. Ziegler and J. P. Biersack, The Stopping and Range of Ions in Solids (Springer -Verlag, New York, 1985).
21.
21.Z. Suo and W. Lu, J. Nanopart. Res. 2, 333-344 (2000).
http://dx.doi.org/10.1023/A:1010041505860
22.
22.H.-C. Yu and W. Lu, Acta Mater. 53, 1799-1807 (2005).
http://dx.doi.org/10.1016/j.actamat.2004.12.029
23.
23.A. G. Kachaturyan, Theory of structural transformation in solids (John Wiley & Sons Inc., New York, 1982).
24.
24.S. Vilayurganapathy, A. Devaraj, R. Colby, A. Pandey, T. Varga, V. Shutthanandan, S. Manandhar, P. Z. El-Khoury, A. Kayani, W. P. Hess, and S. Thevuthasan, Nanotechnology 24, 095707 (2013).
http://dx.doi.org/10.1088/0957-4484/24/9/095707
25.
25.J. W. Christian, The theory of transformations in Metals and Alloys (Elsevier Ltd., 2002).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935568
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935568
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935568
2015-11-06
2016-09-26

Abstract

In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935568.html;jsessionid=quIZSH6lMkdTL-9aELEn_exW.x-aip-live-06?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935568&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935568&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935568'
Right1,Right2,Right3,