Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935639
1.
1.S. Nadeem and S. Saleem, “Mixed convection flow of Eyring-Powell fluid along a rotating cone,” Results in Physics 4, 54-62 (2014).
http://dx.doi.org/10.1016/j.rinp.2014.03.004
2.
2.M.Y. Malik, A. Hussain, and S. Nadeem, “Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity,” Scientia Iranica Transactions B: Mechanical Engineering 20, 313-321 (2013).
3.
3.S. Nadeem, R. Haq, and Z.H. Khan, “Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles,” Journal of the Taiwan Institute of Chemical Engineers 45, 121-126 (2014).
http://dx.doi.org/10.1016/j.jtice.2013.04.006
4.
4.M. Jalil, S. Asghar, and S.M. Imran, “Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream,” International Journal of Heat and Mass Transfer 65, 73-79 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.05.049
5.
5.N.S. Akbar, A. Ebaid, and Z.H. Khan, “Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet,” Journal of Magnetism and Magnetic Materials 382, 355-358 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.01.088
6.
6.A.V. Rosca and I. Pop, “Flow and heat transfer of Powell-Eyring fluid over a shrinking surface in a parallel free stream,” International Journal of Heat and Mass Transfer 71, 321-327 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.020
7.
7.A. Ara, N.A. Khan, H. Khan, and F. Sultan, “Radiation effect on boundary layer flow of an Eyring-Powell fluid over an exponentially shrinking Sheet,” Ain Shams Engineering Journal 5, 1337-1342 (2014).
http://dx.doi.org/10.1016/j.asej.2014.06.002
8.
8.T. Javid, N. Ali, Z. Abbas, and M. Sajid, “Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet,” Chemical Engineering communications 3, 327-336 (2012).
9.
9.M. Patel and M.G. Timol, “Numerical treatment of Powell-Eyring fluid flow using Method of Satisfaction of Asymptotic Boundary Conditions (MSABC),” Applied Numerical Mathematics 59, 2584-2592 (2009).
http://dx.doi.org/10.1016/j.apnum.2009.04.010
10.
10.N.A. Khan, S. Aziz, and N.A. Khan, “MHD flow of Powell-Eyring fluid over a rotating disk,” Journal of the Taiwan Institute of Chemical Engineers 45, 2859-2867 (2014).
http://dx.doi.org/10.1016/j.jtice.2014.08.018
11.
11.B.C. Sakiadis, “Boundary-Layer Behavior on Continuous Solid Surfaces: I.Boundary Layer Equations for Two-Dimensional and Axisymmetric Flow,” AIChE. Journal 7, 26-28 (1961).
http://dx.doi.org/10.1002/aic.690070108
12.
12.L.J. Crane, “Flow past a Stretching Plate,” journal of applied mathematics and physics 21, 645-647 (1970).
http://dx.doi.org/10.1007/BF01587695
13.
13.S. Nadeem, S. Zaheer, and T. Fang, “Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface,” Numeric. Algoritham 57, 187-205 (2011).
http://dx.doi.org/10.1007/s11075-010-9423-8
14.
14.N.S Akbar, S. Nadeem, R.U Haq, and Z.H Khan, “Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet,” Indian Journal of Physics 87, 1121-1124 (2013).
http://dx.doi.org/10.1007/s12648-013-0339-8
15.
15.S. Nadeem, R.U. Haq, and C. Lee, “MHD boundary layer flow over an unsteady shrinking sheet: analytical and numerical approach,” Journal of the Brazilian society of Mechanical sciences and Engineering 37, 1339-1346 (2015).
http://dx.doi.org/10.1007/s40430-014-0261-9
16.
16.M.Y. Malik and T. Salahuddin, “Numerical solution of MHD stagnation pint flow of williamson fluid model over a stretching cylinder,” International journal of non-linear science and numerical simulation 16, 161-164 (2015).
17.
17.M.Y. Malik, T. Salahuddin, Arif Hussain, and S. Bilal, “MHD flow of tangent hyperbolic fluid over a stretching cylinder: Using Keller box method,” Journal of magnetism and magnetic materials 395, 271-276 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.07.097
18.
18.S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA (ASME, FED 231/MD, 1995), Vol.66, pp. 199-105.
19.
19.S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions,” Appllied Physics Letters 79, 2252-2254 (2001).
http://dx.doi.org/10.1063/1.1408272
20.
20.J. Buongiorno, “Convective transport in nanofluids,” ASME Journal of Heat Transfer 128, 240-250 (2006).
http://dx.doi.org/10.1115/1.2150834
21.
21.M.Y. Malik, M. Naseer, S. Nadeem, and A. Rehman, “The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder,” Applied Nanoscience 4, 869-873 (2014).
http://dx.doi.org/10.1007/s13204-013-0267-0
22.
22.W.A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” International Journal of Heat and Mass Transfer 53, 2477-2483 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
23.
23.S. Nadeem, R. Mehmood, and N.S. Akbar, “Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer,” International Journal of Heat and Mass Transfer 57, 679-689 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.019
24.
24.M.H. Abolbashari, N. Freidoonimehr, F. Nazari, and M.M. Rashidi, “Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface,” Advanced Powder Technology 26, 542-552 (2015).
http://dx.doi.org/10.1016/j.apt.2015.01.003
25.
25.H. Heidary and M.J. Kermani, “Heat transfer enhancement in a channel with block(s) effect and utilizing Nano-fluid,” International Journal of Thermal Sciences 57, 163-171 (2012).
http://dx.doi.org/10.1016/j.ijthermalsci.2012.02.001
26.
26.N.S. Akbar, S. Nadeem, C. Lee, Z.H. Khan, and R.U. Haq, “Numerical study of Williamson nano fluid flow in an asymmetric channel,” Results in Physics 3, 161-166 (2013).
http://dx.doi.org/10.1016/j.rinp.2013.08.005
27.
27.N. Dalir, M. Dehsara, and S.S. Nourazar, “Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet,” Energy 79, 351-362 (2015).
http://dx.doi.org/10.1016/j.energy.2014.11.021
28.
28.N. Freidoonimehr, M.M. Rashidi, and S. Mahmud, “Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid,” International Journal of Thermal Sciences 87, 136-145 (2015).
http://dx.doi.org/10.1016/j.ijthermalsci.2014.08.009
29.
29.M.H. Abolbashari, N. Freidoonimehr, F. Nazari, and M.M. Rashidi, “Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid,” Powder Technology 267, 256-267 (2014).
http://dx.doi.org/10.1016/j.powtec.2014.07.028
30.
30.H. Heidary, R. Hosseini, M. Pirmohammadi, and M.J. Kermani, “Numerical study of magnetic field effect on nano-fluid forced convection in a channel,” Journal of Magnetism and Magnetic Materials 374, 11-17 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.08.001
31.
31.A.K. AbdulHakeem, N.V. Ganesh, and B. Ganga, “Magnetic field effect on second order slip flow of nanofluid overa stretching/shrinking sheet with thermal radiation effect,” Journal of Magnetism and Magnetic Materials 381, 243-257 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.12.010
32.
32.A. Malvandi, F. Hedayati, and D.D. Ganji, “Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet,” Powder Technology 253, 377-384 (2014).
http://dx.doi.org/10.1016/j.powtec.2013.11.049
33.
33.B. Saadatfara, R. Fakhraia, and T. Fransson, “Conceptual modeling of Nano-fluid ORC for solar thermal polygeneration,” Energy Procedia 57, 2696-2705 (2014).
http://dx.doi.org/10.1016/j.egypro.2014.10.301
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935639
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935639
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935639
2015-11-13
2016-12-09

Abstract

In the present analysis incompressible two dimensional mixed convectionflow of MHD Eyring-Powell nanofluid over a stretching sheet is investigated numerically. The governing highly nonlinear partial differential equations are converted into ordinary differential equations by using a similarity approach. Numerical solutions of the nonlinear ordinary differential equations are found by using a shooting method. Effects of various parameters are displayed graphically for velocity, temperature and concentration profiles. Also quantities of practical interest i.e skin friction coefficient, Nusselt number and Sherwood number are presented graphically and tabularly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935639.html;jsessionid=vaqEG9r0a-wHEs4gwv1iB3yo.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935639&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935639&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935639'
Right1,Right2,Right3,