Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935645
1.
1.J. Lott, C. Xia, L. Kosnovsky, C. Weder, and J. Shan, Adv. Mater. 20, 3649 (2008).
http://dx.doi.org/10.1002/adma.200800531
2.
2.I. I. Naumov, L. Bellaiche, and H. Fu, Nature. 432, 737 (2004).
http://dx.doi.org/10.1038/nature03107
3.
3.S. H. Shin, y. H. Kim, M. H. Lee, J. Y. Jung, and J. Vah, ACS Nano. 8, 2766 (2014).
http://dx.doi.org/10.1021/nn406481k
4.
4.K. Manoli, P. Oikonomou, E. Valamontes, I. Raptis, and M. Sanopoulou, J. Appl. Polym. Sci. 4, 2577 (2012).
http://dx.doi.org/10.1002/app.35362
5.
5.Y. F. Cui, J. Briscoe, and S. Dunn, Chem. Mater. 25, 4215 (2013).
http://dx.doi.org/10.1021/cm402092f
6.
6.B. G. Yust, N. Razavi, F. Pedraza, Z. Elliott, A. T. Tsin, and D. K. Sardar, Opt. Express. 20, 26511 (2012).
http://dx.doi.org/10.1364/OE.20.026511
7.
7.M. K. Rath, G. K. Pradhan, B. Pandey, H. C. Verma, B. K. Roul, and S. Anand, Mater. Lett. 62, 2136 (2008).
http://dx.doi.org/10.1016/j.matlet.2007.11.033
8.
8.S. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe, and M. Naito, Mater. Lett. 62, 2957 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.01.083
9.
9.S. G. Kwon, K. Choi, and B. I. Kim, Mater. Lett. 60, 979 (2006).
http://dx.doi.org/10.1016/j.matlet.2005.10.089
10.
10.R. E. Cohen, Nature. 358, 136 (1992).
http://dx.doi.org/10.1038/358136a0
11.
11.K. Branker, M.J.M. Pathak, and M. Pearce, Renew. Sust. Energy Rev. 15, 4470 (2011).
http://dx.doi.org/10.1016/j.rser.2011.07.104
12.
12.J. M. Pearce, Energy. 34, 1947 (2009).
http://dx.doi.org/10.1016/j.energy.2009.08.012
13.
13.B. Dunn, H. Kamath, and J. M. Tarascon, Science. 334, 928 (2011).
http://dx.doi.org/10.1126/science.1212741
14.
14.S. A. Bruno, D. K. Swanson, and I. Burn, J. Am. Ceram. Soc. 76, 1233 (1993).
http://dx.doi.org/10.1111/j.1151-2916.1993.tb03747.x
15.
15.K. Kinoshita and A. Yamaji, J. Appl. Phys. 47, 371 (1976).
http://dx.doi.org/10.1063/1.322330
16.
16.G. Arlt, D. Hennings, and G. de, J. Appl. Phys. 58, 1619 (1985).
http://dx.doi.org/10.1063/1.336051
17.
17.M. Jayalakshmi and K. Balasubramanian, J. Electro. Chem. Sci. 3, 1196 (2008).
18.
18.U. C. Chung, C. Elissalde, S. Mornet, M. Maglione, and C. Estournes, Appl. Phys. Lett. 94, 072903 (2009).
http://dx.doi.org/10.1063/1.3076125
19.
19.P. Gonon and F. El Kamel, Appl. Phys. Lett. 90, 232902 (2007).
http://dx.doi.org/10.1063/1.2746066
20.
20.P. Muralt, J. Micromech. Microeng. 10, 136 (2000).
http://dx.doi.org/10.1088/0960-1317/10/2/307
21.
21.C.J. Xiao, C.Q. Jin, and X.H. Wang, J. Mater. Chem. Phys. 111, 209 (2008).
http://dx.doi.org/10.1016/j.matchemphys.2008.01.020
22.
22.L. Wang, L. Liu, D. Xue, H. Kang, and C. Liu, J. Alloys Compd. 440, 78 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.09.023
23.
23.M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, Chem. Mater. 20, 5381 (2008).
http://dx.doi.org/10.1021/cm801638d
24.
24.S. Fuentes, R.A. Zárate, E. Chávez, P. Munoz, M. Ayala, R. Espinoza-González, and P. Leyton, J. Alloys Compd. 505, 568 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.06.074
25.
25.A. Neubrand, R. Lindner, and P. Hoffmann, J. Am. Ceram. Soc. 83, 860 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01286.x
26.
26.G.H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, J. Phys. Chem. 97, 2368 (1993).
http://dx.doi.org/10.1021/j100112a043
27.
27.K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989).
http://dx.doi.org/10.1111/j.1151-2916.1989.tb07706.x
28.
28.V. D. Mote, Y. Purushotham, and B. N. Dole, J. Theor. Appl. Phys. 6, 6 (2012).
http://dx.doi.org/10.1186/2251-7235-6-6
29.
29.A. L. Patterson, Phys. Rev. 56, 978 (1939).
http://dx.doi.org/10.1103/PhysRev.56.978
30.
30.M.B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. Seshadri, L. E. Brus, and M. L. Steigerwald, J. Am. Chem. Soc. 130, 6955 (2008).
http://dx.doi.org/10.1021/ja0758436
31.
31.A.K. Kalyani, D.K. Khatua, B. Loukya, R. Datta, A. N. Fitch, A. Senyshyn, and R. Ranjan, Phys. Rev. B. 91, 104104 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.104104
32.
32.M. Hoang, J. C. Mutin, J. C. Niepce, and O. Olivo, C. R. Acad. Sc. Paris 297, 899 (1983).
33.
33.N. Bernaben, A. Leriche, B. Thierry, J. C. Niepce, and R. Waser, Fourth Euro Ceram. 5, 203 (1995).
34.
34.P. Sarrazin, D. Blake, D. Bish, D. Vaniman, and S. Collins, J. Phys. IV. 8, 85 (1998).
35.
35.M. Valden, X. Lai, and D. W. Goodman, Science. 281, 1647 (1998).
http://dx.doi.org/10.1126/science.281.5383.1647
36.
36.T. Allen and A. A. Khan, Chem. Eng. 238, CE 108 (1970).
37.
37.B. Akbari, M. P. Tavandashti, and M. Zandrahimi Iranian, J. Mater. Sci. Eng. 8, 2 (2011).
38.
38.S. Yoon and S. Baik, J. Am. Ceram. Soc. 90, 311 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01361.x
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935645
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935645
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935645
2015-11-09
2016-12-06

Abstract

Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl) and titanium tetrachloride (TiCl) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO nanopowders. The as-prepared BaTiO powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO nanopowders can be stabilized by the sol-hydrothermal method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935645.html;jsessionid=5dIxaVpKz9YEmAKDvxRTQOia.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935645&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935645&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935645'
Right1,Right2,Right3,