Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935648
1.
1.S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 77, 2814 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2814
2.
2.J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).
http://dx.doi.org/10.1126/science.277.5330.1284
3.
3.K. Yamaguchi, M. Nakajima, and T. Suemoto, Phys. Rev. Lett. 105, 237201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.237201
4.
4.F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, Phys. Rev. B 73, 014421 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.014421
5.
5.G. Wolf, Diploma thesis (2007).
6.
6.J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4313
7.
7.I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, Journal of Applied Physics 87, 5073 (2000).
http://dx.doi.org/10.1063/1.373252
8.
8.T. J. Silva, C. S. Lee, T. M. Crawford, and C. T. Rogers, Journal of Applied Physics 85, 7849 (1999).
http://dx.doi.org/10.1063/1.370596
9.
9.A. B. Kos, T. J. Silva, and P. Kabos, Review of Scientific Instruments 73, 3563 (2002).
http://dx.doi.org/10.1063/1.1505657
10.
10.I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, and C. Back, Journal of Magnetism and Magnetic Materials 307, 148 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.03.060
11.
11.M. J. Donahue and D. G. Porter, OOMMF User Guide, Version 1.0, NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935648
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935648
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935648
2015-11-09
2016-09-30

Abstract

We demonstrate coherent control of time domain ferromagnetic resonance by all electrical excitation and detection. Using two ultrashort magnetic field steps with variable time delay we control the induction decay in yttrium iron garnet (YIG). By setting suitable delay times between the two steps the precession of the magnetization can either be enhanced or completely stopped. The method allows for a determination of the precession frequency within a few precession periods and with an accuracy much higher than can be achieved using fast fourier transformation. Moreover it holds the promise to massively increase precession amplitudes in pulsed inductive microwave magnetometry (PIMM) using low amplitude finite pulse trains. Our experiments are supported by micromagnetic simulations which nicely confirm the experimental results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935648.html;jsessionid=bYKJscyxUvbgP-kmAZqScKrQ.x-aip-live-06?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935648&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935648&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935648'
Right1,Right2,Right3,