Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935693
1.
1.S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
2.
2.D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 2008 (2005).
http://dx.doi.org/10.1126/science.1108813
3.
3.E. Martinez, J. Appl. Phys. 111, 07D302 (2012).
4.
4.M. Ito, A. Ooba, T. Komine, and R. Sugita, J. Magn. Magn. Mater. 340, 61 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.03.035
5.
5.T. Komine, K. Takahashi, A. Ooba, and R. Sugita, J. Appl. Phys. 109, 07D503 (2011).
http://dx.doi.org/10.1063/1.3545797
6.
6.P. E. Roy and J. Wunderlich, Appl. Phys. Lett. 99, 122504 (2011).
http://dx.doi.org/10.1063/1.3641884
7.
7.O. Boulle, G. Malinowski, and M. Kläui, Mater. Sci. Eng. R. 72, 159 (2011).
http://dx.doi.org/10.1016/j.mser.2011.04.001
8.
8.L. Heyne, J. Rhensius, A. Bisig, S. Krzyk, and P. Punke, Appl. Phys. Lett. 96, 032504 (2010).
http://dx.doi.org/10.1063/1.3291067
9.
9.J. Heinen, O. Boulle, K. Rousseau, G. Malinowski, and M. Kläui, Appl. Phys. Lett. 96, 202510 (2010).
http://dx.doi.org/10.1063/1.3405712
10.
10.J. Curiale, A. Lemalˆtre, C. Ulysse, G. Faini, and V. Jeudy, Phys. Rev. Lett. 108, 076604 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.076604
11.
11.J. Torrejon, G. Malinowski, M. Pelloux, R. Weil, A. Thiaville, J. Curiale, D. Lacour, F. Montaigne, and M. Hehn, Phys. Rev. Lett. 109, 106601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.106601
12.
12.A. Vanhaverbeke, A. Bischof, and R. Allenspach, Phys. Rev. Lett. 101, 107202 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107202
13.
13.M. Hayashi, L. Thomas, C. Rettner, R. Moriya, and S. S. P. Parkin, Nature Phys. 3, 21 (2007).
http://dx.doi.org/10.1038/nphys464
14.
14.J. Y. Lee, K. S. Lee, and S. K. Kim, Appl. Phys. Lett. 91, 122513 (2007).
http://dx.doi.org/10.1063/1.2789176
15.
15.L. Thomas, M. Hayashi, R. Moriya, C. Rettner, and S. S. P. Parkin, Nature Comm. 3, 810 (2012).
http://dx.doi.org/10.1038/ncomms1808
16.
16.M. D. Mascaro and C. A. Ross, Phys. Rev. B 82, 214411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.214411
17.
17.A. L. Gonzalez Oyarce, Y. Nakatani, and C. H. W. Barnes, Phys. Rev. B 87, 214403 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214403
18.
18.P. E. Roy, T. Trypiniotis, and C. H. W. Barnes, Phys. Rev. B 82, 134411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134411
19.
19.S. F. Zhang, Q. Y. Zhu, C. P. Mu, Q. Zheng, X. Y. Liu, Q. F. Liu, and J. B. Wang, J. Magn. Magn. Mater. 347, 124 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.07.061
20.
20.Y. Jang, S. R. Bowden, M. Mascaro, J. Unguris, and C. A. Ross, Appl. Phys. Lett. 100, 062407 (2012).
http://dx.doi.org/10.1063/1.3681800
21.
21.C. Nam, M. D. Mascaro, and C. A. Ross, J. Appl. Phys. 113, 17B903 (2013).
22.
22.A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys. Lett. 69, 990 (2005).
http://dx.doi.org/10.1209/epl/i2004-10452-6
23.
23.R. Wieser, E. Y. Vedmedenko, P. Weinberger, and R. Wiesendanger, Phys. Rev. B 82, 144430 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.144430
24.
24.J. He, Z. Li, and S. Zhang, J. Appl. Phys. 99, 08G509 (2006).
25.
25.A. Kunz, Appl. Phys. Lett. 94, 132502 (2009).
http://dx.doi.org/10.1063/1.3112577
26.
26.G. -W. Chern, H. Youk, and O. Tchernyshyov, J. Appl. Phys. 99, 08Q505 (2006).
http://dx.doi.org/10.1063/1.2168439
27.
27.I. Purnama, M. Chandra Sekhar, S. Goolaup, and W. S. Lew, Appl. Phys. Lett. 99, 152501 (2011).
http://dx.doi.org/10.1063/1.3650706
28.
28.Y. Su, J. Sun, J. Hu, and H. Lei, Europhys. Lett. 103, 67004 (2013).
http://dx.doi.org/10.1209/0295-5075/103/67004
29.
29.Q. Zhu, C. Mu, H. Xia, W. Wang, J. Wang, and Q. Liu, Physica B 407, 4584 (2012).
http://dx.doi.org/10.1016/j.physb.2012.08.009
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935693
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935693
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935693
2015-11-09
2016-09-27

Abstract

Dynamics of multiple transverse walls (TWs) in a magnetic nanostripe is studied by micromagnetic simulations. It shows that, when TWs are arranged in a stripe with same orientation, they will attract each other and finally annihilate. However, when adjacent TWs are arranged with opposite orientation, a metastable complex wall can be formed, e.g., two TWs lead to 360 wall. For three or more TWs, the formed complex wall includes a number of 360 substructures, which is called multiple 360 structure (M360S) here. The M360S itself may be used to store multiple logical data since each 360 substructure can act as logical ”0” or ”1”. On the other hand, the M360S may behave like single TW under an applied current, namely, the M360S can be driven steadily by current like that of single TW. A parity effect of the number of 360 substructures on the critical current for the annihilation is found. Namely, when the number is odd or even, the critical current increase or decrease with the increasing of the number, respectively. The parity effect is relevant to the out-of-plane magnetic moment of the M360S.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935693.html;jsessionid=cdDPuF_O1I1Z69i3txQ26sZf.x-aip-live-02?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935693&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935693&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935693'
Right1,Right2,Right3,