Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. S. Kong, H. R. Lee, and Y. Cui, Nature Communications 4, 3522 (2013).
2.K. Qian, B. C. Sweeny, A. C. Johnston-Peck, W. X. Niu, J. O. Graham, J. S. DuChene, J. J. Qiu, Y. C. Wang, M. H. Engelhard, D. Su, E. A. Stach, and W. D. Wei, J. Am. Chem. Soc. 136, 9842 (2014).
3.N. A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, and S. I. Bozhevolnyi, Nature Communications 5, 4809 (2014).
4.W. Q. Zhu and K. B. Crozier, Nature Communications 5, 6228 (2014).
5.S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Science 343, 1496 (2014).
6.S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater. 14, 567 (2015).
7.R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kartner, W. S. Graves, and K. K. Berggren, Acs Nano 8, 11474 (2014).
8.J. S. DuChene, B. C. Sweeny, A. C. Johnston-Peck, D. Su, E. A. Stach, and W. D. Wei, Angewandte Chemie-International Edition 53, 7887 (2014).
9.Y. Wang, S. I. Choi, X. Zhao, S. F. Xie, H. C. Peng, M. F. Chi, C. Z. Huang, and Y. N. Xia, Adv. Funct. Mater. 24, 131 (2014).
10.A. Loubat, L. M. Lacroix, A. Robert, M. Imperor-Clerc, R. Poteau, L. Maron, R. Arenal, B. Pansu, and G. Viau, J. Phys. Chem. C 119, 4422 (2015).
11.H. Wang, J. T. Wang, Z. X. Cao, W. J. Zhang, C. S. Lee, S. T. Lee, and X. H. Zhang, Nature Communications 6, 7412 (2015).
12.N. Mojarad, M. Hojeij, L. Wang, J. Gobrecht, and Y. Ekinci, Nanoscale 7, 4031 (2015).
13.Tomoko Gowa Oyama, Akihiro Oshima, Masakazu Washio, and Seiichi Tagawa, Aip Advances 1 (2011).
14.Vitor R. Manfrinato, Lihua Zhang, Dong Su, Huigao Duan, Richard G. Hobbs, Eric A. Stach, and Karl K. Berggren, Nano Lett. 13, 1555 (2013).
15.S. Takei, H. Maki, K. Sugahara, K. Ito, and M. Hanabata, AIP Advances 5, 077141 (7 pp.) (2015).
16.Ajuan Cui, Zhe Liu, Huanli Dong, Yujin Wang, Yonggang Zhen, Wuxia Li, Junjie Li, Changzhi Gu, and Wenping Hu, Adv. Mater. 27, 3002 (2015).
17.Chen Zhang, Da Wang, Zheng-Hao Liu, Yan Zhang, Ping Ma, Qing-Rong Feng, Yue Wang, and Zi-Zhao Gan, Aip Advances 5 (2015).
18.V. Abramova, A. S. Slesarev, and J. M. Tour, Nano Lett. 15, 2933 (2015).
19.A. E. Grigorescu and C. W. Hagen, Nanotechnology 20, 292001 (2009).
20.H. G. Duan, Donald Winston, Joel K. W. Yang, Bryan M. Cord, Vitor R. Manfrinato, and Karl K. Berggren, J. Vac. Sci. Technol. B 28, C6C58 (2010).
21.I. Ziler, J. E. F. Frost, V. ChabasseurMolyneux, C. J. B. Ford, and M. Pepper, Semicond. Sci. Technol. 11, 1235 (1996).
22.H. G. Duan, J. G. Zhao, Y. Z. Zhang, E. Q. Xie, and L. Han, Nanotechnology 20, 135306 (2009).
23.Y. Koval, J. Vac. Sci. Technol. B 22, 843 (2004).
24.S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, Nano Lett. 7, 1076 (2007).
25.I. B. Baek, J. H. Yang, W. J. Cho, C. G. Ahn, K. Im, and S. Lee, 24.
26.L. Dreeskornfeld, A. P. Graham, J. Hartwich, J. Kretz, E. Landgraf, T. Lutz, W. Rosner, M. Specht, and L. Risch, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45, 5552 (2006).
27.K. Critchley, B. P. Khanal, M. L. Gorzny, L. Vigderman, S. D. Evans, E. R. Zubarev, and N. A. Kotov, Adv. Mater. 22, 2338 (2010).
28.C. Durkan and M. E. Welland, Phys. Rev. B 61, 14215 (2000).
29.Z. Q. Liang, J. Sun, Y. Y. Jiang, L. Jiang, and X. D. Chen, Plasmonics 9, 859 (2014).
30.Jacob B. Khurgin, Nat Nano 10, 2 (2015).

Data & Media loading...


Article metrics loading...



We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd