Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935750
1.
1.P. C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. S. Kong, H. R. Lee, and Y. Cui, Nature Communications 4, 3522 (2013).
http://dx.doi.org/10.1038/ncomms3522
2.
2.K. Qian, B. C. Sweeny, A. C. Johnston-Peck, W. X. Niu, J. O. Graham, J. S. DuChene, J. J. Qiu, Y. C. Wang, M. H. Engelhard, D. Su, E. A. Stach, and W. D. Wei, J. Am. Chem. Soc. 136, 9842 (2014).
http://dx.doi.org/10.1021/ja504097v
3.
3.N. A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, and S. I. Bozhevolnyi, Nature Communications 5, 4809 (2014).
http://dx.doi.org/10.1038/ncomms5809
4.
4.W. Q. Zhu and K. B. Crozier, Nature Communications 5, 6228 (2014).
5.
5.S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Science 343, 1496 (2014).
http://dx.doi.org/10.1126/science.1248797
6.
6.S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater. 14, 567 (2015).
http://dx.doi.org/10.1038/nmat4281
7.
7.R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kartner, W. S. Graves, and K. K. Berggren, Acs Nano 8, 11474 (2014).
http://dx.doi.org/10.1021/nn504594g
8.
8.J. S. DuChene, B. C. Sweeny, A. C. Johnston-Peck, D. Su, E. A. Stach, and W. D. Wei, Angewandte Chemie-International Edition 53, 7887 (2014).
http://dx.doi.org/10.1002/anie.201404259
9.
9.Y. Wang, S. I. Choi, X. Zhao, S. F. Xie, H. C. Peng, M. F. Chi, C. Z. Huang, and Y. N. Xia, Adv. Funct. Mater. 24, 131 (2014).
http://dx.doi.org/10.1002/adfm.201302339
10.
10.A. Loubat, L. M. Lacroix, A. Robert, M. Imperor-Clerc, R. Poteau, L. Maron, R. Arenal, B. Pansu, and G. Viau, J. Phys. Chem. C 119, 4422 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b00242
11.
11.H. Wang, J. T. Wang, Z. X. Cao, W. J. Zhang, C. S. Lee, S. T. Lee, and X. H. Zhang, Nature Communications 6, 7412 (2015).
http://dx.doi.org/10.1038/ncomms8412
12.
12.N. Mojarad, M. Hojeij, L. Wang, J. Gobrecht, and Y. Ekinci, Nanoscale 7, 4031 (2015).
http://dx.doi.org/10.1039/C4NR07420C
13.
13.Tomoko Gowa Oyama, Akihiro Oshima, Masakazu Washio, and Seiichi Tagawa, Aip Advances 1 (2011).
http://dx.doi.org/10.1063/1.3665672
14.
14.Vitor R. Manfrinato, Lihua Zhang, Dong Su, Huigao Duan, Richard G. Hobbs, Eric A. Stach, and Karl K. Berggren, Nano Lett. 13, 1555 (2013).
15.
15.S. Takei, H. Maki, K. Sugahara, K. Ito, and M. Hanabata, AIP Advances 5, 077141 (7 pp.) (2015).
http://dx.doi.org/10.1063/1.4927210
16.
16.Ajuan Cui, Zhe Liu, Huanli Dong, Yujin Wang, Yonggang Zhen, Wuxia Li, Junjie Li, Changzhi Gu, and Wenping Hu, Adv. Mater. 27, 3002 (2015).
http://dx.doi.org/10.1002/adma.201500527
17.
17.Chen Zhang, Da Wang, Zheng-Hao Liu, Yan Zhang, Ping Ma, Qing-Rong Feng, Yue Wang, and Zi-Zhao Gan, Aip Advances 5 (2015).
18.
18.V. Abramova, A. S. Slesarev, and J. M. Tour, Nano Lett. 15, 2933 (2015).
http://dx.doi.org/10.1021/nl504716u
19.
19.A. E. Grigorescu and C. W. Hagen, Nanotechnology 20, 292001 (2009).
http://dx.doi.org/10.1088/0957-4484/20/29/292001
20.
20.H. G. Duan, Donald Winston, Joel K. W. Yang, Bryan M. Cord, Vitor R. Manfrinato, and Karl K. Berggren, J. Vac. Sci. Technol. B 28, C6C58 (2010).
http://dx.doi.org/10.1116/1.3453699
21.
21.I. Ziler, J. E. F. Frost, V. ChabasseurMolyneux, C. J. B. Ford, and M. Pepper, Semicond. Sci. Technol. 11, 1235 (1996).
http://dx.doi.org/10.1088/0268-1242/11/8/021
22.
22.H. G. Duan, J. G. Zhao, Y. Z. Zhang, E. Q. Xie, and L. Han, Nanotechnology 20, 135306 (2009).
http://dx.doi.org/10.1088/0957-4484/20/13/135306
23.
23.Y. Koval, J. Vac. Sci. Technol. B 22, 843 (2004).
http://dx.doi.org/10.1116/1.1689306
24.
24.S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, Nano Lett. 7, 1076 (2007).
http://dx.doi.org/10.1021/nl062911y
25.
25.I. B. Baek, J. H. Yang, W. J. Cho, C. G. Ahn, K. Im, and S. Lee, 24.
26.
26.L. Dreeskornfeld, A. P. Graham, J. Hartwich, J. Kretz, E. Landgraf, T. Lutz, W. Rosner, M. Specht, and L. Risch, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45, 5552 (2006).
http://dx.doi.org/10.1143/JJAP.45.5552
27.
27.K. Critchley, B. P. Khanal, M. L. Gorzny, L. Vigderman, S. D. Evans, E. R. Zubarev, and N. A. Kotov, Adv. Mater. 22, 2338 (2010).
http://dx.doi.org/10.1002/adma.201000236
28.
28.C. Durkan and M. E. Welland, Phys. Rev. B 61, 14215 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14215
29.
29.Z. Q. Liang, J. Sun, Y. Y. Jiang, L. Jiang, and X. D. Chen, Plasmonics 9, 859 (2014).
http://dx.doi.org/10.1007/s11468-014-9682-7
30.
30.Jacob B. Khurgin, Nat Nano 10, 2 (2015).
http://dx.doi.org/10.1038/nnano.2014.310
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935750
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935750
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935750
2015-11-09
2016-12-05

Abstract

We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935750.html;jsessionid=CzqTo1Lg7VM0u9REY96FiKmp.x-aip-live-02?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935750&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935750&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935750'
Right1,Right2,Right3,