Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
2.J. Nogues, D. Lederman, T. J. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996).
3.K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, J. Appl. Phys. 83, 6888 (1998).
4.M. Gibert, P. Zubko, R. Scherwitzl, J. Iniguez, and J. M. Triscone, Nat. Mater. 11, 195 (2012).
5.M. E. Gomez, G. Campillo, J. G. Ramirez, P. Prieto, A. Hoffmann, J. Guimpel, N. Haberkorn, A. Condo, and F. Lovey F, IEEE Trans. Magn. 42, 2981 (2006).
6.Y. Tang, Y. Sun, and Z. Cheng, J. Appl. Phys. 100, 023914 (2006).
7.B. Cui, C. Song, G. Y. Wang, H. J. Mao, F. Zeng, and F. Pan, Sci. Rep. 3, 2542 (2013).
8.X. Liu, H. Lu, M. He, K. Jin, and G. Yang, Sol. State Comm. 188, 23 (2014).
9.D. T. Margulies, F. T. Parker, F. E. Spada, R. S. Goldman, J. Li, R. Sinclair, and A. E. Berkowitz, Phys. Rev. B 53, 9175 (1996).
10.S. K. Arora, R. G. S. Sofin, A. Nolan, and I. V. Shvets, J. Magn. Magn. Mater. 286, 463 (2005).
11.S. G. Bhat and P. S. A. Kumar, Sci. Rep. 4, 5588 (2014).
12.D. T. Margulies, F. T. Parker, M. L. Rudee, F. E. Spada, J. N. Chapman, P. R. Aitchison, and A. E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997).
13.F. C. Voogt, T. T. M. Palstra, L. Niesen, O. C. Rogojanu, M. A. James, and T. Hibma, Phys. Rev. B 57, R8107 (1998).
14.T. Hibma, F. C. Voogt, L. Niesen, P. A. A. van der Heijden, W. J. M. de Jonge, J. J. T. M. Donkers, and P. J. van der Zaag, J. Appl. Phys. 85, 5291 (1999).
15.R. G. S. Sofin, S. K. Arora, and I. V. Shvets, Phys. Rev. B 83, 134436 (2011).
16.J. B. Moussy, S. Gota, A. Bataille, M. J. Guittet, M. Gautier-Soyer, F. Delille, B. Dieny, F. Ott, T. D. Doan, P. Warin, P. Bayle-Guillemaud, C. Gatel, and E. Snoeck, Phys. Rev. B 70, 174448 (2004).
17.A. M. Bataille, L. Ponson, S. Gota, L. Barbier, D. Bonamy, M. Gautier-Soyer, C. Gatel, and E. Snoeck, Phys. Rev. B 74, 155438 (2006).
18.D. Gilks, L. Lari, J. Naughton, O. Cespedes, Z. Cai, A. Gerber, M. S. Thompson, K. Ziemer, and V. K. Lazarov, J. Phys.: Condens. Matter 25, 485004 (2013).
19.Y. Peng, C. Park, and D. E. Laughlin, J. Appl. Phys. 93, 7957 (2003).
20.S. Celotto, W. Eerenstein, and T. Hibma, Eur. Phys. J. B 36, 271 (2003).
21.Q. Zhu, M. Zheng, M. Yang, R. Zheng, Y. Wang, X. Li, and X. Shi, Appl. Phy. Lett. 105, 241604 (2014).
22.Y. Hwang, S. Angappane, J. Park, K. An, T. Hyeon, and J. Park, Curr. Appl. Phys. 12, 808 (2012).
23.M. Kaur, W. Jiang, Y. Qiang, E. C. Burks, K. Liu, F. Namavar, and J. S. McCloy, J. Appl. Phys. 116, 173902 (2014).
24.D. Paccard, C. Schlenker, O. Massenet, R. Montmory, and A. Yelon, Phys. Stat. Sol. 16, 301 (1966).
25.A. R. Muxworthy and E. McClelland, Geophys. J. Int. 140, 101 (2000).
26.R. Aragon, Phys. Rev. B 46, 5328 (1992).
27.H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey, and J. Stohr, Phys. Rev. Lett. 91, 017203 (2003).
28.Z. Kakol and J. M. Honig, Phys. Rev. B 40, 9090 (1989).
29.L. R. Bickford, Jr., J. M. Brownlow, and R. F. Penoyer, Proc. Instn. Elect. Engrs. B 104, 238 (1956).
30.R. Reznicek, V. Chlan, H. Stepankova, P. Novak, and M. Marysko, J. Phys.: Condens. Matter. 24, 055501 (2012).
31.R. Aragon, Phys. Rev. B 46, 5334 (1992).
32.D. Schmitz, C. S. Antoniak, A. Warland, M. Darbandi, S. Haldar, S. Bhandary, O. Eriksson, B. Sanyal, and H. Wende, Sci. Rep. 4, 5760 (2014).

Data & Media loading...


Article metrics loading...



We observe exchange bias (EB) in a single magnetic film FeO at temperature T < 200 K. Irrespective of crystallographic orientations of grown FeO; they exhibit similar nature of EB for (100) epitaxial, (111) oriented and polycrystalline FeO thin films. Growth induced defects such as anti-phase boundaries (APBs) in epitaxial FeO thin film is known to have an influence on the magnetic interaction. But, it is noticed that according to the common consensus of APBs alone cannot explain the origin of EB. If majority of APBs end up with mainly anti-ferromagnetic interactions across these boundaries together with the internal ordering modification in FeO, then EB can emerge at low temperatures. Hence, we propose the idea of directional anti-ferromagnetic APB induced EB in FeO triggered by internal ordering for T ≤ 200 K. Similar arguments are extended to (111) oriented as well as polycrystalline FeO films where the grain boundaries can impart same consequence as that of APBs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd