Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Li, L. Lan, M. Xu, H. Xu, D. Luo, P. Xiao, and J. Peng, S.-S. Electronics 91, 912 (2014).
2.W.-T. Chen, S.-Y. Lo, S.-Ch. Kao, H.-W. Zan, Ch.-Ch. Tsai, J.-H. Lin, Ch.-H. Fang, and Ch.-Ch. Lee, IEEE Electron Device Lett. 32, 15521554 (2011).
3.D. Cho, S. Woo, J. Yang, D. Lee, Y. Lim, D. Kim, S. Park, and M. Yi, Elect. Mater. Lett. 9, 381384 (2013).
4.W. A. MacDonald, J. Mater. Chem. 14, 410 (2004).
5.X. Liu, X. Yang, M. Liu, Z. Tao, Q. Dai, L. Wei, Chi Li, X. Zhang, B. Wang, and A. Nathan, Appl. Phys. Lett. 104, 113501 (2014).
7.R. Ondo-Ndong, G. Ferblantier, M. Al Kalfioui, A. Boyer, and A. Foucaran, Journal of Crystal Growth 255, 130135 (2003).
8.H.-Ch. You, Int. J. Electrochem. Sci. 8, 97739784 (2013).
9.M. Benwadih, J. A. Chroboczek, G. Ghibaudo, R. Coppard, and D. Vuillaume, J. Appl. Phys. 115, 214501 (2014).
10.J. F. Wager, Journal of the SID 18, 749752 (2010).
11.E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 29452986 (2012).
12.J. Y. Kwon and J. K. Jeong, Semicond. Sci. Technol. 30, 024002 (2015).
13.S. Lee, S. Jeon, and A. Nathan, J. Display Tech. 9, 883889 (2013).
14.S. W. Cho, Ch. H. Ahn, M. G. Yun, S. H. Kim, and H. K. Cho, Thin Solid Films 562, 597602 (2014).
15.J.-M. Lee, I.-T. Cho, Lee, and H.-I. Kwon, Appl. Phys. Lett. 93, 093504 (2008).
16.J. Jeong, G. J. Lee, J. Kim, J. Kim, and B. Choi, Applied Physics Express 6, 031101 (2013).
17.P.-T. Liu, Y.-T. Chou, and L.-F. Teng, Appl. Phys. Lett. 95, 233504 (2009).
18.A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).
19.M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, J. Vac. Sci. Technol. A 14, 22202230 (1996).
20.A. Dey, A. Indluru, S. M. Venugopal, D. R. Allee, and T. L. Alford, IEEE Electron Device Lett. 31, 14161418 (2011).
21.K. Nomura, T. Kamiya, and H. Hosono, ECS J. Solid State Sci. and Tech. 2, P5-P8 (2013).
22.P. Erhart and K. Albe, Physical Review B 73, 115207 (2006).

Data & Media loading...


Article metrics loading...



Some applications of thin film transistors (TFTs) need the bottom-gate architecture and unpassivated channel backside. We propose a simple routine to fabricate indium doped ZnO-based TFT with satisfactory characteristics and acceptable stability against a bias stress in ambient room air. To this end, a channel layer of 15 nm in thickness was deposited on cold substrate by DC reactive magnetron co-sputtering of metal Zn-In target. It is demonstrated that the increase of In concentration in ZnO matrix up to 5% leads to negative threshold voltage (V) shift and an increase of field effect mobility (μ) and a decrease of subthreshold swing (SS). When dopant concentration reaches the upper level of 5% the best TFT parameters are achieved such as V = 3.6 V, μ = 15.2 cm2/V s, SS = 0.5 V/dec. The TFTs operate in enhancement mode exhibiting high turn on/turn off current ratio more than 106. It is shown that the oxidative post-fabrication annealing at 250oC in pure oxygen and next ageing in dry air for several hours provide highly stable operational characteristics under negative and positive bias stresses despite open channel backside. A possible cause of this effect is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd