Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Li, R. Zhu, and Y. Yang, Nat Photon. 6, 153 (2012).
2.L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, Adv. Mater. 25, 6642 (2013).
3.A. Mishra and P. Bauerle, Angew. Chem. Int. Ed. Engl. 51, 2020 (2012).
4.Y. Lin, Y. Li, and X. Zhan, Chem. Soc. Rev. 41, 4245 (2012).
5.G. Yu, J. Gao, J. Hummelen, F. Wudl, and A. Heeger, Science-AAAS-Weekly Paper Edition 270, 1789 (1995).
6.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature 376, 498 (1995).
7.Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, Nat Commun 5, 5293 (2014).
8.Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat Photon. 6, 593 (2012).
9.J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat Commun 4, 1446 (2013).
10.A. Facchetti, Mater. Today. 16, 123 (2013).
11.C. R. McNeill, Energy Environ. Sci. 5, 5653 (2012).
12.X. Zhang, Z. Lu, L. Ye, C. Zhan, J. Hou, S. Zhang, B. Jiang, Y. Zhao, J. Huang, S. Zhang, Y. Liu, Q. Shi, Y. Liu, and J. Yao, Adv. Mater. 25, 5791 (2013).
13.E. Zhou, J. Cong, Q. Wei, K. Tajima, C. Yang, and K. Hashimoto, Angew. Chem. Int. Ed. 50, 2799 (2011).
14.D. Mori, H. Benten, J. Kosaka, H. Ohkita, S. Ito, and K. Miyake, ACS Appl. Mat. Interfaces 3, 2924 (2011).
15.X. Liu, S. Huettner, Z. Rong, M. Sommer, and R. H. Friend, Adv. Mater. 24, 669 (2012).
16.M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, and D. Neher, Adv. Energy Mater. 2, 369 (2012).
17.T. Earmme, Y.-J. Hwang, N. M. Murari, S. Subramaniyan, and S. A. Jenekhe, J. Am. Chem. Soc. 134, 14960 (2013).
18.D. Mori, H. Benten, I. Okada, H. Ohkita, and S. Ito, Adv. Energy Mater. 4, 1301006 (2014).
19.Y. Zhou, T. Kurosawa, W. Ma, Y. Guo, L. Fang, K. Vandewal, Y. Diao, C. Wang, Q. Yan, J. Reinspach, J. Mei, A. L. Appleton, G. I. Koleilat, Y. Gao, S. C. Mannsfeld, A. Salleo, H. Ade, D. Zhao, and Z. Bao, Adv. Mater. 26, 3767 (2014).
20.T. Earmme, Y. J. Hwang, S. Subramaniyan, and S. A. Jenekhe, Adv. Mater. 26, 6080 (2014).
21.D. Mori, H. Benten, I. Okada, H. Ohkita, and S. Ito, Energy Environ. Sci. 7, 2939 (2014).
22.J. W. Jung, J. W. Jo, C. C. Chueh, F. Liu, W. H. Jo, T. P. Russell, and A. K. Y. Jen, Adv. Mater. DIO:10.1002/adma.201501214.
23.N. Zhou, H. Lin, S. J. Lou, X. Yu, P. Guo, E. F. Manley, S. Loser, P. Hartnett, H. Huang, M. R. Wasielewski, L. X. Chen, R. P. H. Chang, A. Facchetti, and T. J. Marks, Adv. Energy Mater. 4, 1300785 (2014).
24.H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
25.L. Huo, J. Hou, S. Zhang, H.-Y. Chen, and Y. Yang, Angew. Chem. Int. Ed. 49, 1500 (2010).
26.J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. C. Su, and Y. Chen, J. Am. Chem. Soc. 134, 16345 (2012).
27.J. Yuan, H. Dong, M. Li, X. Huang, J. Zhong, Y. Li, and W. Ma, Adv. Mater. 26, 3624 (2014).
28.X. Guo, M. Zhang, W. Ma, L. Ye, S. Zhang, S. Liu, H. Ade, and F. Huang, J. Hou, Adv. Mater. 26, 4043 (2014).
29.J. Yuan, X. Huang, H. Dong, J. Lu, T. Yang, Y. Li, A. Gallagher, and W. Ma, Org. Electron. 14, 635 (2013).
30.N. M. Murari, M. J. Crane, T. Earmme, Y.-J. Hwang, and S. A. Jenekhe, Appl. Phys. Lett. 104, 223906 (2014).
31.L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat Photon. 6, 180 (2012).
32.V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006).
33.Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011).
34.J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).
35.J. Yuan, Z. Zhai, H. Dong, J. Li, Z. Jiang, Y. Li, and W. Ma, Adv. Funct. Mater. 23, 885 (2013).
36.See supplementary material at for TGA curves of polymer PBPT-8 and PBPT-12 (Fig. S1); different parameters of the all-PSCs as a function of pre-annealing temperatures (Fig. S2); External quantum efficiency of PBPT-8:N2200 and PBPT-12:N2200 active blend based all-PSCs with different annealing temperatures (Fig. S3); electron mobility in PBPT-12:N2200 blended films as a function of annealing temperatures (Fig. S4); differential transmission spectra of a neat PBPT-12 film and a neat N2200 film at different time delays between the pump and the probe pulses, using probing pulses in the range of 500-1000 nm and pump pulses at 800 nm (Fig. S5); comparison of the normalized ΔT/T dynamics in the neat a neat PBPT-12 film and a neat N2200 film with the probe wavelength of 500 nm, 650 nm and 1000nm (Fig. S6); comparison of the normalized ΔT/T dynamics in the neat PBPT-12 film, neat N2200 film and PBPT-12:N2200 blended film with the probe wavelength of 850 nm; 900 nm; 950 nm and 1000nm (Fig. S7); Atomic force microscope height images (5 μm × 5 μm) of PBPT-12:N2200 blended films. (a), (b) and (c) annealed at 160oC for 10 minutes; (d), (e) and (e) non-treated (Fig. S8) ; The fluorescence lifetime of PBPT-12:N2200 blends based all-PSCs in different annealing temperature (Table S1).[Supplementary Material]

Data & Media loading...


Article metrics loading...



We reported all polymer solar cells (all-PSCs) employing BDT-based donor–acceptor (D–A) polymers composed of benzo[1,2-b:4,5-b’]dithiophene (BDT) and thiadiazolo[3,4-c]pyridine (PyTZ) (PBPT-8 and PBPT-12) as donor and NDI-based n-type polymer Poly{[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)} (P(NDI2OD-T2)) (N2200) as acceptor. The influence of thermal annealing on the performance of all-PSCs was systematically investigated and discussed. It was found that the pre-annealing of the active blend films could significantly improve the all-PSCs performance. Both PBPT-8/PBPT-12:N2200 systems can deliver promising PCEs (4.12% and 4.25%) at the optimal annealing temperature of 160 oC due to the promoted film quality and charge transport properties. Morphology investigation and carrier mobility measurements have been carried out to analyze the effect of thermal annealing. This study suggests that BDT-based polymer:N2200 systems can be promising candidates for all-PSCs, with thermal annealing as an effective approach to promote the device performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd