Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935871
1.
1.R. Skrotzki, J. Fiedler, T. Herrmannsdörfer, V. Heera, M. Voelskow, A. Mücklich, B. Schmidt, W. Skorupa, G. Gobsch, M. Helm, and J. Wosnitza, Appl. Phys. Lett. 97, 192505 (2010).
http://dx.doi.org/10.1063/1.3509411
2.
2.J. Fiedler, V. Heera, R. Skrotzki, T. Herrmannsdörfer, M. Voelskow, A. Mücklich, S. Oswald, B. Schmidt, W. Skorupa, G. Gobsch, J. Wosnitza, and M. Helm, Phys. Rev. B 83, 214504 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.214504
3.
3.V. Heera, J. Fiedler, M. Voelskow, A. Mücklich, R. Skrotzki, T. Herrmannsdörfer, and W. Skorupa, Appl. Phys. Lett. 100, 262602 (2012).
http://dx.doi.org/10.1063/1.4732081
4.
4.V. Heera, J. Fiedler, R. Hübner, B. Schmidt, M. Voelskow, W. Skorupa, R. Skrotzki, T Herrmannsdörfer, J. Wosnitza, and M. Helm, New J. Phys. 15, 083022 (2013).
http://dx.doi.org/10.1088/1367-2630/15/8/083022
5.
5.I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.469
6.
6.V. F. Gantmakher and V. T. Dolgopolov, Phys. Usp. 53, 1 (2010).
http://dx.doi.org/10.3367/UFNe.0180.201001a.0003
7.
7.V. Heera, J. Fiedler, B. Schmidt, R. Hübner, M. Voelskow, R. Skrotzki, and W. Skorupa, J. Low Temp. Phys. 180, 342 (2015).
http://dx.doi.org/10.1007/s10909-015-1318-6
8.
8.G. Jung, S. Vitale, J. Konopka, and M. Bonaldi, J. Appl. Phys. 70, 5440 (1991).
http://dx.doi.org/10.1063/1.350202
9.
9.G. Jung, B. Savo, and A. Vecchione, Europhys. Lett. 21, 947 (1993).
http://dx.doi.org/10.1209/0295-5075/21/9/012
10.
10.Hyun-Sook Lee, Dong-Jin Jang, Heon-Jung Kim, Byeongwon Kang, and Sung-Ik Lee, Physica C 456, 153 (2007).
http://dx.doi.org/10.1016/j.physc.2006.11.015
11.
11.L. Legrand, I. Rosenman, Ch. Simon, and G. Collin, Physica C 211, 239 (1993).
http://dx.doi.org/10.1016/0921-4534(93)90747-E
12.
12.T. Konoike, K. Uchida, T. Osada, T. Yamaguchi, M. Nishimura, T. Terashima, S. Uji, and J. Yamada, Phys. Rev. B 79, 054509 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.054509
13.
13.C. H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. Daniel Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, Andrew J. Millis, Alberto F. Morpurgo, Douglas Natelson, and Jean-Marc Triscone, Rev. Mod. Phys. 78, 1185 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1185
14.
14.F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk1,3, R. Movshovich, and J. D. Thompson, J. Phys.: Condens. Matter 20, 342203 (2008).
http://dx.doi.org/10.1088/0953-8984/20/34/342203
15.
15.Shingo Yonezawa, Tomohiro Kajikawa, and Yoshiteru Maeno, Phys. Rev. Lett. 110, 077003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.077003
16.
16.M. Tinkham, Introduction to superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).
17.
17.G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.1125
18.
18.M. Reibelt, S. Weyeneth, A. Erb, and A. Schilling, Supercond. Sci. Technol. 24, 105019 (2011).
http://dx.doi.org/10.1088/0953-2048/24/10/105019
19.
19.V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Yu. Mironov, M. R. Baklanov, and Ch. Strunk, Nature (London) 452, 613 (2008).
http://dx.doi.org/10.1038/nature06837
20.
20.T. I. Baturina and V. M. Vinokur, Ann. Phys. 331, 236 (2013).
http://dx.doi.org/10.1016/j.aop.2012.12.007
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935871
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935871
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935871
2015-11-11
2016-09-29

Abstract

Silicon films with Ga-rich nanoprecipitates are superconductors or insulators in dependence on their normal state resistance. Even in the insulating state of the film superconducting nanoprecipitates exist below the critical temperature of 7 K and determine its complex transport behavior. In this range sometimes large, random resistance jumps appear that are accompanied by little temperature changes. The resistance fluctuates between a well-defined low-resistance value and a broader band of higher resistances. Jumps to higher resistance are associated with a temperature decrease and vice versa. We present experimental results on these fluctuations and suppose a first order phase transition in the film as probable origin.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935871.html;jsessionid=g7GGmQGy7Z5XMlpYdKoIp3ZH.x-aip-live-02?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935871&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935871&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935871'
Right1,Right2,Right3,