Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Yongho Seo, Byeongho Eom, Insuk Yu, Kyoungwan Park, and Seonjae Lee, Solid State Communications 130, 391 (2004).
2.I. V. Kukushkin, S. A. Mikhailov, J. H. Smet, and K. von Klitzing, Appl. Phys. Lett. 86, 044101 (2005).
3.K. Stone, C. L. Yang, Z. Q. Yuan, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 76, 153306 (2007).
4.B. Simovic, C. Ellenberger, K. Ensslin, H.-P. Tranitz, and W. Wegscheider, Phys. Rev. B 71, 233303 (2005).
5.S.A. Mikhailov, Appl. Phys. Lett. 89, 042109 (2006).
6.I. V. Kukushkin, M. Yu. Akimov, J. H. Smet, S. A. Mikhailov, and K. von Klitzing, Phys. Rev. Lett. 92, 236803 (2004).
7.K. Von Klitzing, S. A. Mikhailov, J.H. Irma Smet, and I. V. Kukushkin, US Patent 6 987 484 B2 (2006).
8.V. A. Volkov and S. A. Mikhailov, Sov. Phys. J. E. T. P. 67, 1639 (1988).
9.Y. Takagaki and D. K. Ferry, Phys. Rev. B 48, 8152 (1993).
10.A. Dorn, M. Sigrist, A. Fuhrer, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Physica E 13, 719 (2002).
11.D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 70, 4118 (1993).
12.S. A. Mikhailov and V. A. Volkov, Phys. Low-Dim. Struct. 1, 31 (1994).
13.S. A. Mikhailov, Phys. Rev. B 54, 14293 (1996).
14.S. A. Mikhailov and V. A. Volkov, Phys. Rev. B 52, 17260 (1995).
15.K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, and K. Ploog, Phys. Rev. Lett. 66, 1618 (1991).
16.T. Deruelle, Y. Guldner, and B Meurer, Solid State Commun. 96, 877 (1995).
17.Y. Zhao, D. C. Tsui, M. Santos, M. Shayegan, R. A. Ghanbari, D. A. Antoniadis, and H. I. Smith, Appl. Phys. Lett. 60, 1510 (1992).
18.S. Sassine, Yu. Krupko, J.- C. Portal, Z.D. Kvon, R. Murali, K.P. Martin, G. Hill, and A. D. Wieck, Phys. Rev. B 78, 045431 (2008).
19.I. Bisotto, E. S. Kannan, S. Sassine, R. Murali, T.J. Beck, L. Jalabert, and J.-C. Portal, Nanotechnology 22, 245401 (2011).
20.E. S. Kannan, I. Bisotto, J. - C. Portal, R. Murali, and T. J. Beck, Appl. Phys. Lett. 98, 193505 (2011).
21.E. S. Kannan, I Bisotto, J. - C. Portal, T. J. Beck, and L. Jalabert, Appl. Phys. Lett. 101, 143504 (2012).
22.I. Bisotto, E.S. Kannan, J.- C. Portal, D. Brown, T. J. Beck, Yu. Krupko, L. Jalabert, H. Fujita, Y. Hoshi, Y. Shiraki, and T. Saraya, Sci. Technol. Adv. Mater. 15, 045005 (2014).
23.F. Stern, Phys. Rev. Lett. 18, 546 (1967).
24.E. Vasiliadou, G. Müller, D. Heitmann, D. Weiss, K. v. Klitzing, H. Nickel, W. Schlapp, and R. Lösch, Phys. Rev. B 48, 17145 (1993).
25.R. G. Mani, J. H. Smet, K.v. Klitzing, V. Narayanamurti, W. B. Johnson, and V. Umansky, Nature 420, 646 (2002).
26.M. A. Zudov and R. R. Du, Phys. Rev. Lett. 90, 046807 (2003).

Data & Media loading...


Article metrics loading...



We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG) and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < B where B is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd