Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935913
1.
1.K. Nakajima, K. Morishita, and R. Murai, J. Cryst. Growth 405, 44 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.07.024
2.
2.A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, Sol. Energy Mater. Sol. Cells 114, 110 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.01.030
3.
3.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt: Res. Appl. 22, 701 (2014).
http://dx.doi.org/10.1002/pip.2525
4.
4.Q. Shen, K. Katayama, T. Sawada, S. Hachiya, and T. Toyoda, Chem. Phys. Lett. 542, 89 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.05.076
5.
5.H. Sugimoto, M. Inoue, M. Tajima, A. Ogura, and Y. Ohshima, Jpn. J. Appl. Phys. 45, L641 (2006).
http://dx.doi.org/10.1143/JJAP.45.L641
6.
6.T. Fuyuki, H. Kondo, Y. Kaji, A. Ogane, and Y. Takahashi, J. Appl. Phys. 101, 023711 (2007).
http://dx.doi.org/10.1063/1.2431075
7.
7.O. Breitenstein, J. Bauer, and J. P. Rakotoniaina, Semiconductors 41(4), 440 (2007).
http://dx.doi.org/10.1134/S106378260704015X
8.
8.B. Moralejo, M. A. Gonzalez, J. Jimenez, V. Parra, O. Martinez, J. Gutierrez, and O. Charro, J. Electron. Mater. 39, 663 (2010).
http://dx.doi.org/10.1007/s11664-010-1174-8
9.
9.M. Tonouchi, Nat. Photonics 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
10.
10.B. Ferguson and X. C. Zhang, Nat. Mater. 1, 26 (2002).
http://dx.doi.org/10.1038/nmat708
11.
11.D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
http://dx.doi.org/10.1364/JOSAB.7.002006
12.
12.D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
http://dx.doi.org/10.1109/2944.571768
16.
16.M. Tonouchi, S. Shikii, M. Yamashita, K. Shikita, T. Kondo, O. Morikawa, and M. Hangyo, Jpn. J. Appl. Phys. 37, L1301 (1998).
http://dx.doi.org/10.1143/JJAP.37.L1301
17.
17.S. Kim, H. Murakami, and M. Tonouchi, IEEE J. Sel. Top. Quantum Electron. 14, 498 (2008).
http://dx.doi.org/10.1109/JSTQE.2007.913425
18.
18.H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, J. Phys. D: Appl. Phys. 47, 374007 (2014).
http://dx.doi.org/10.1088/0022-3727/47/37/374007
19.
19.M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, Appl. Phys. Lett. 94, 191104 (2009).
http://dx.doi.org/10.1063/1.3133346
20.
20.K. Sakai, Terahertz Optoelectronics (Springer, Berlin, 2005), p. 9.
21.
21.H. Nakanishi, S. Fujiwara, K. Takayama, I. Kawayama, H. Murakami, and M. Tonouchi, Appl. Phys. Express 5, 112301 (2012).
http://dx.doi.org/10.1143/APEX.5.112301
22.
22.K. A. Salek, H. Nakanishi, A. Ito, I. Kawayama, H. Murakami, and M. Tonouchi, Opt. Eng. 53(3), 031204 (2014).
23.
23.M. H. Jones and S. H. Jones, “Optical properties of silicon” (2002) http://www.univie.ac.at/photovoltaik/vorlesung/ss2014/unit4/optical_properties_silicon.pdf.
24.
24.A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, U.K, 2011), p. 112.
25.
25.T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, Appl. Phys. Lett. 89, 044107 (2006).
http://dx.doi.org/10.1063/1.2234747
26.
26.H. Sugimoto and M. Tajima, J Mater Sci: Mater Electron 19, S127 (2008).
http://dx.doi.org/10.1007/s10854-008-9615-3
27.
27.P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, and S. W. Glunz, J. Appl. Phys. 101, 123110 (2007).
http://dx.doi.org/10.1063/1.2749201
28.
28.M. Glatthaar, J. Giesecke, M. Kasemann, J. Haunschild, Manuel The, W. Warta, and Stefan Rein, J. Appl. Phys. 105, 113110 (2009).
http://dx.doi.org/10.1063/1.3132827
29.
29.K. Nishioka, T. Yagi, Y. Uraoka, and T. Fuyuki, Sol. Energy Mater. Sol. Cells 91, 1 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.06.060
30.
30.N.M. Thantsha, E.Q.B. Macabebe, F.J. Vorster, and E.E. van Dyk, Physica B 404, 4445 (2009).
http://dx.doi.org/10.1016/j.physb.2009.09.010
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935913
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935913
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935913
2015-11-11
2016-10-01

Abstract

A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935913.html;jsessionid=0BkSkQZvmbs0WsmR60QDR6AJ.x-aip-live-02?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935913&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935913&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935913'
Right1,Right2,Right3,