Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4935924
1.
1.T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67, 180401 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.180401
2.
2.X. B. Wu, X. F. Wang, Y. F. Liu, W. Cai, S. Peng, F.Z. Huang, X. M. Lu, F. Yan, and J. S. Zhu, Appl. Phys. Lett. 95, 182903 (2009).
http://dx.doi.org/10.1063/1.3259651
3.
3.N. Hur, S. Park, S. Guha, A. Borissov, V. Kiryukhin, and S. W. Cheong, Appl. Phys. Lett. 87, 042901 (2005).
http://dx.doi.org/10.1063/1.1997272
4.
4.K. M. Song, Y. A. Park, K. D. Lee, B. K. Yun, M. H. Jung, J. Cho, J. H. Jung, and N. Hur, Phys. Rev. B 83, 012404 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.012404
5.
5.G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).
http://dx.doi.org/10.1063/1.2177543
6.
6.T. Bonaedy, Y. S. Koo, K. D. Sung, and J. H. Jung, Appl. Phys. Lett. 91, 132901 (2007).
http://dx.doi.org/10.1063/1.2790474
7.
7.S. Yanez-Vilar, M. Sanchez-Andujar, J. Mira, S. Castro-Garcia, J. Rivas, and M. A. Senaris-Rodriguez, J. Appl. Phys. 108, 074115 (2010).
http://dx.doi.org/10.1063/1.3481661
8.
8.H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
http://dx.doi.org/10.1126/science.1094207
9.
9.Y. J. Wu, C. Yu, X. M. Chen, and J. Li, Appl. Phys. Lett. 100, 052902 (2012).
http://dx.doi.org/10.1063/1.3680090
10.
10.Y. Y. Li and G. D. Li, Ferrite Physics (Science Press, Beijing, 1978), p. 19.
11.
11.T. Sun, A. Borrasso, B. Liu, and V. Dravid, J. Am. Ceram. Soc. 94, 1490 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04265.x
12.
12.P. Hu, H. B. Yang, D. A. Pan, H. Wang, J. J. Tian, S. G. Zhang, X. F. Wang, and A. A. Volinsky, J. Magn. Magn. Mater. 332, 173 (2011).
13.
13.Z. W. Yin, in Dielectric Physics (Science Press, Beijing, 2003), Chap. 2.
14.
14.D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.01.238
15.
15.R. S. Freitas, J. F. Mitchell, and P. Schiffer, Phys. Rev. B 72, 144429 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.144429
16.
16.P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.052105
17.
17.N. Biskup, A. de Andres, J. L. Martinez, and J. L. Perca, Phys. Rev. B 72, 024115 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024115
18.
18.D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, Appl. Phys. Lett. 80, 2153 (2002).
http://dx.doi.org/10.1063/1.1463211
19.
19.A. M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00324-2
20.
20.R. C. Kambale, P. A. Shaikh, C. H. Bhosale, K. Y. Rajpure, and Y. D. Kolekar, Smart. Mater. Struct. 18, 115028 (2009).
http://dx.doi.org/10.1088/0964-1726/18/11/115028
21.
21.A. M. Shaikh, S. S. Bellad, and B. K. Chougule, J. Magn. Magn. Mater. 195, 384 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00138-9
22.
22.J. Rani, K. L. Yadav, and S. Prakash, Composites: Part B 79, 138 (2015).
http://dx.doi.org/10.1016/j.compositesb.2015.04.041
23.
23.R. S. Devan and B. K. Chougule, J. Appl. Phys. 101, 014109 (2007).
http://dx.doi.org/10.1063/1.2404773
24.
24.Y. J. Wu, C. Yu, X. M. Chen, and J. Li, J. Magn. Magn. Mater. 324, 3334 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.05.045
25.
25.M. F. Hundley, J. J. Neumeier, R. H. Heffner, Q. X. Jia, X. D. Wu, and J.D. Thompson, J. Appl. Phys. 79, 4535 (1996).
http://dx.doi.org/10.1063/1.361715
26.
26.C. Zener, Phys. Rev. 82, 403 (1951).
http://dx.doi.org/10.1103/PhysRev.82.403
27.
27.S. T. Jiang and W. Li, in Condensed Matter Magnetic Physics (Science Press, Beijing, 2003), Chap. 5.
28.
28.Y. Kohara, Y. Yamasaki, Y. Onose, and Y. Tokura, Phys. Rev. B 82, 104419 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.104419
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4935924
Loading
/content/aip/journal/adva/5/11/10.1063/1.4935924
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4935924
2015-11-11
2016-09-29

Abstract

The magnetocapacitance effects of MnZn ferrites with different initial permeabilities have been studied systematically. Both intrinsic effect associated with magnetoelectric coupling and extrinsic effect, which means the combined contribution of magnetoresistance and the Maxwell-Wagner effect, have been observed simultaneously. Analysis shows that the relationship between the origins of both is in competitive equilibrium. Either of both mechanisms plays a dominant role in magnetocapacitance effects under different conditions, respectively, such as permeability and frequency of applied signals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4935924.html;jsessionid=q3dPDVP1iyuklV6y1ZJJR94e.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4935924&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4935924&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4935924'
Right1,Right2,Right3,