Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936128
1.
1.J.I. Uba, A.J. Ekpunobi, and P.I. Ekwo, Afr. Rev. Phys. 9(0043), 339 (2014).
2.
2.J.I. Uba, A.J. Ekpunobi, and P.I. Ekwo, Res. J. Recent Sci. 1(11), 56 (2012).
3.
3.B. Revaz, M.C. Cyrille, B.L. Zink, Ivan.K. Schuller, and F. Hellman, Phys. Rev. B 65, 094417 (1) (2002).
http://dx.doi.org/10.1103/PhysRevB.65.094417
4.
4.J.M. Ziman, Principles of The Theory of Solids, second ed. (Cambridge University Press, Cambridge, 1972).
5.
5.A.K. Majumdar, A.F. Hebard, A. Singh, and D. Temple, Phys. Rev. B 65, 054408 (1) (2002).
http://dx.doi.org/10.1103/PhysRevB.65.054408
6.
6.R.S. Patel, A.K. Majumdar, A.F. Hebard, and D. Temple, J. Appl. Phys. 93(10), 7684 (2003).
http://dx.doi.org/10.1063/1.1555753
7.
7.B.G. Almeida, V.S. Amaral, J.B. Sousa, R. Colino, I.K. Schuller, V.V. Moschalkov, and Y. Bruynseraede, J. Appl. Phys. 85(8), 4433 (1999).
http://dx.doi.org/10.1063/1.370365
8.
8.A.O.E. Animalu, Intermediate Quantum Theory of Crystalline Solids (Prentice-Hall, New Jersey, 1977).
9.
9.A.H. Wilson, Proc. R. Soc. Lond. A 167, 580 (1938).
http://dx.doi.org/10.1098/rspa.1938.0156
10.
10.D.A. Goodings, Phys. Rev 132(2), 542 (1963).
http://dx.doi.org/10.1103/PhysRev.132.542
11.
11.N.W. Ashcroft and N.D. Mermin, Solid State Physics (Harcourt College Publishers, U.S.A, 1976).
12.
12.O.F. Bakkaloglu, J. Magn. Magn. Mater. 182, 324 (1998).
http://dx.doi.org/10.1016/S0304-8853(97)01041-X
13.
13.G. Oomi, T. Sakai, Y. Uwatoko, K. Takanashi, and H. Fujimori, Physica B 239, 19 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00369-4
14.
14.R.Q. Hood and L.M. Falicov, Phy. Rev. B 46, 8287 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.8287
15.
15.www.environmentalchemistry.com. Retrieved January 25, 2015.
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936128
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936128
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936128
2015-11-13
2016-09-29

Abstract

The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, () = + , which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phononscatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4ΩK−2 and −8 ± 0.7 × 10−7ΩK−3. From the linear atomic chain model, the dielectric constant at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936128.html;jsessionid=8tMSm7nP7CGVCCit2VqoHzUm.x-aip-live-06?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936128&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936128&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936128'
Right1,Right2,Right3,