Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Y. Hwang, S. W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
2.T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. F. Yin, and J. Shen, Nat. Phys. 5, 885 (2009).
3.X. Ke, L. J. Belenky, V. Lauter, H. Ambaye, C. W. Bark, C. B. Eom, and M. S. Rzchowski, Phys. Rev. Lett. 110, 237201 (2013).
4.E. Dagotto, Science 318, 1076 (2007).
5.Y. P. Lee, S. Y. Park, Y. H. Hyun, J. B. Kim, V. G. Prokhorov, V. A. Komashko, and V. L. Svetchnikov, Phys. Rev. B 73, 224413 (2006).
6.D. Gillaspie, J. X. Ma, H. Y. Zhai, T. Z. Ward, H. M. Christen, E. W. Plummer, and J. Shen, J. Appl. Phys. 99, 08S901 (2006).
7.G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 90, 012509 (2007).
8.A. J. Millis, Nature 392, 147 (1998).
9.P. Dey, T. K. Nath, and A. Taraphder, Appl. Phys. Lett. 91, 012511 (2007).
10.D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J. G. Yoon, T. K. Song, and T. W. Noh, Phys. Rev. Lett. 95, 237602 (2005).
11.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
12.M. Opel, J. Phys. D: Appl. Phys. 45, 033001 (2012).
13.W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nat. Mater. 6, 348 (2007).
14.H. F. Kay and P. Vousden, Philos. Mag. 40, 1019 (1949).
15.F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).
16.S. Geprägs, M. Opel, S. T. B. Goennenwein, and R. Gross, Phys. Rev. B 86, 134432 (2012).
17.S. Sahoo, S. Polisetty, C. G. Duan, S. S. Jaswal, E. Y. Tsymbal, and C. Binek, Phys. Rev. B 76, 092108 (2007).
18.T. Taniyama, K. Akasaka, D. Fu, and M. Itoh, J. Appl. Phys. 105, 07D901 (2009).
19.S. Brivio, D. Petti, R. Bertacco, and J. C. Cezar, Appl. Phys. Lett. 98, 092505 (2011).
20.L. Bocher, A. Gloter, A. Crassous, V. Garcia, K. March, A. Zobelli, S. Valencia, S. Enouz-Vedrenne, X. Moya, N. D. Marthur, C. Deranlot, S. Fusil, K. Bouzehouane, M. Bibes, A. Barthélémy, C. Colliex, and O. Stéphan, Nano Lett. 12, 376 (2012).
21.T. N. Narayanan, B. P. Mandal, A. K. Tyagi, A. Kumarasiri, X. Zhan, M. G. Hahm, M. R. Anantharaman, G. Lawes, and P. M. Ajayan, Nano Lett. 12, 3025 (2012).
22.F. D. Czeschka, S. Geprägs, M. Opel, S. T. B. Goennenwein, and R. Gross, Appl. Phys. Lett. 95, 062508 (2009).
23.S. Geprägs, F. Czeschka, M. Opel, S. Goennenwein, W. Yu, W. Mader, and R. Gross, J. Magn. Magn. Mater. 321, 2001 (2009).
24.M. Opel, S. Geprägs, E. P. Menzel, A. Nielsen, D. Reisinger, K. Nielsen, A. Brandlmaier, F. D. Czeschka, M. Althammer, M. Weiler, S. T. B. Goennenwein, J. Simon, M. Svete, W. Yu, S. Hühne, W. Mader, and R. Gross, Phys. Status Solidi A 208, 232 (2011).
25.H. F. Tian, T. L. Qu, L. B. Luo, J. J. Yang, S. M. Guo, H. Y. Zhang, Y. G. Zhao, and J. Q. Li, Appl. Phys. Lett. 92, 063507 (2008).
26.C. A. F. Vaz, J. Hoffman, A. B. Posadas, and C. H. Ahn, Appl. Phys. Lett. 94, 022504 (2009).
27.G. E. Sterbinsky, B. W. Wessels, J. W. Kim, E. Karapetrova, P. J. Ryan, and D. J. Keavney, Appl. Phys. Lett. 96, 092510 (2010).
28.R. V. Chopdekar and Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006).
29.M. K. Lee, T. K. Nath, C. B. Eom, M. C. Smoak, and F. Tsui, Appl. Phys. Lett. 77, 3547 (2000).
30.A. Alberca, N. M. Nemes, F. J. Mompean, N. Biskup, A. de Andres, C. Munuera, J. Tornos, C. Leon, A. Hernando, P. Ferrer, G. R. Castro, J. Santamaria, and M. G. Hernandez, Phys. Rev. B 84, 134402 (2011).
31.A. Alberca, C. Munuera, J. Tornos, F. J. Mompean, N. Biskup, A. Ruiz, N. M. Nemes, A. de Andres, C. León, J. Santamaría, and M. García-Hernández, Phys. Rev. B 86, 144416 (2012).
32.Y. L. Xie, H. L. Yang, Y. W. Liu, Z. H. Yang, B. Chen, Z. H. Zuo, S. Katlakunta, Q. F. Zhan, and R. W. Li, J. Appl. Phys. 113, 17C716 (2013).
33.Z. X. Cheng, X. L. Wang, S. X. Dou, M. Osada, and H. Kimura, Appl. Phys. Lett. 99, 092103 (2011).
34.X. Moya, L. E. Hueso, F. Maccherozzi, A. I. Tovstolytkin, D. I. Podyalovskii, C. Ducati, L. C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M. E. Vickers, E. Defay, S. S. Dhesi, and N. D. Mathur, Nat. Mater. 12, 52 (2013).
35.C. Zener, Phys. Rev. 82, 403 (1951).
36.J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, Nat. Mater. 8, 229 (2009).
37.See supplementary material at for sample preparation and structure information.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Manganites thin filmsgrown on ferroelectric BaTiO (BTO) exhibit dramatic jumps for both magnetization and resistivity upon cooling in accordance with the temperature-dependent structural transitions of the BTO substrate. Both upward and downward jumps have been reported at the same temperature point where BTO undergoes a structural transition from monoclinic to rhombohedral. Using LaCaMnO/BaTiO as protype system, we solve the puzzle by showing that the direction of the jumps can be controlled by applying an electric field during post growth cooling which determines the orientation of the c-axis of the BTO substrate at room temperature. This offers a convenient way to control the magnetic and transport behavior of manganites films using electric field.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd