Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936250
1.
1.G. Jan and R. Y. Tong, US patent application 14/529,242 (31 October 2014).
2.
2.D. M. Eigler, A. J. Heinrich, S. Loth, and C. P. Lutz, U.S. Patent 8,724,376 (13 May 2014).
3.
3.A. Fert, Rev. Mod. Phys. 80, 1517 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.1517
4.
4.S. Cheng, J. Teter, P. Lubitz, M. Miller, L. Hoines, J. Krebs, D. Schaefer, and G. Prinz, J. Appl. Phys. 79, 6234 (1996).
http://dx.doi.org/10.1063/1.362079
5.
5.M. N. Baibich, J. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2472
6.
6.W. Egelhoff, Jr., P. Chen, C. Powell, M. Stiles, and R. McMichael, J. Appl. Phys. 79, 2491 (1996).
http://dx.doi.org/10.1063/1.362659
7.
7.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. Djayaprawira, N. Watanabe, and S. Yuasa, Nature 438, 339 (2005).
http://dx.doi.org/10.1038/nature04207
8.
8.C. Chappert, A. Fert, and F. N. Van Dau, Nat. mater. 6, 813 (2007).
http://dx.doi.org/10.1038/nmat2024
9.
9.C. Q. Sun, Prog. Solid State Chem. 35, 1 (2007).
http://dx.doi.org/10.1016/j.progsolidstchem.2006.03.001
10.
10.M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A 8, 1111 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.1111
11.
11.T. Ambrose and C. Chien, Phys. Rev. lett. 76, 1743 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1743
12.
12.T. Ambrose and C. Chien, J. Appl. Phys. 83, 6822 (1998).
http://dx.doi.org/10.1063/1.367863
13.
13.M. Molina-Ruiz, A. Lopeandia, F. Pi, D. Givord, O. Bourgeois, and J. Rodriguez-Viejo, Phys. Rev. B 83, 140407 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.140407
14.
14.S. Sharma, N. Garg, K. V. Ramanujachary, S. E. Lofland, and A. K. Ganguli, Cryst. Growth Des. 12, 4202 (2012).
http://dx.doi.org/10.1021/cg300708d
15.
15.S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, Chemistry of Materials 19, 6478 (2007).
http://dx.doi.org/10.1021/cm071827w
16.
16.A. Raghavender, K. Zadro, D. Pajic, Z. Skoko, and N. Biliškov, Mater. lett. 64, 1144 (2010).
http://dx.doi.org/10.1016/j.matlet.2010.02.031
17.
17.B. Mutelet, N. Keller, S. Roux, M. Flores-Gonzales, F. Lux, M. Martini, O. Tillement, C. Billotey, M. Janier, and C. Villiers, Appl. Phys. A 105, 215 (2011).
http://dx.doi.org/10.1007/s00339-011-6492-z
18.
18.E. Weschke, H. Ott, E. Schierle, C. Schüßler-Langeheine, D. Vyalikh, G. Kaindl, VLeiner, M. Ay, T. Schmitte, and H. Zabel, Phys. Rev. lett. 93, 157204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.157204
19.
19.E. E. Fullerton, S. Adenwalla, G. Felcher, K. Riggs, C. Sowers, S. Bader, and J. Robertson, Phys. Rev. B: Condens. Matter 221(1), 370 (1996).
http://dx.doi.org/10.1016/0921-4526(95)00951-5
20.
20.E. E. Fullerton, K. Riggs, C. Sowers, S. Bader, and A. Berger, Phys. Rev. Lett. 75, 330 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.330
21.
21.X. Lang, W. Zheng, and Q. Jiang, Phys. Rev. B 73, 224444 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224444
22.
22.X. Lang, Z. Wen, and Q. Jiang, J. Phys. Chem. C 112, 4055 (2008).
http://dx.doi.org/10.1021/jp710759m
23.
23.R. Zhang and R. F. Willis, Phys. Rev Lett. 86, 2665 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2665
24.
24.W. Zheng, C. Sun, and B. Tay, Solid state commun. 128, 381 (2003).
http://dx.doi.org/10.1016/j.ssc.2003.08.023
25.
25.H. Stanley (Oxford, New York, 1971).
26.
26.S. Li, J. S. Lian, and Q. Jiang, Chem. Phys. Lett. 455, 202 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.02.098
27.
27.F. Aguilera-Granja and J. Moran-Lopez, Solid State Commun. 74, 155 (1990).
http://dx.doi.org/10.1016/0038-1098(90)91012-6
28.
28.A. Punnoose, H. Magnone, M. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.174420
29.
29.P. Sahoo, H. Djieutedjeu, and P. F. Poudeu, J. Mater. Chem. A 1, 15022 (2013).
http://dx.doi.org/10.1039/c3ta13442c
30.
30.P. Dutta, M. Seehra, S. Thota, and J. Kumar, J Phys.: Condens. Matter 20, 015218 (2008).
http://dx.doi.org/10.1088/0953-8984/20/01/015218
31.
31.D. Resnick, K. Gilmore, Y. Idzerda, M. Klem, M. Allen, T. Douglas, E. Arenholz, and M. Young, J. Appl. Phys. 99, 08Q501 (2006).
http://dx.doi.org/10.1063/1.2163839
32.
32.E. Abarra, K. Takano, F. Hellman, and A. Berkowitz, Phys. Rev. Lett. 77, 3451 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3451
33.
33.P. Van der Zaag, Y. Ijiri, J. Borchers, L. Feiner, R. Wolf, J. Gaines, R. Erwin, and M. Verheijen, Phys. Rev lett. 84, 6102 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6102
34.
34.X. Zheng, C. Xu, K. Nishikubo, K. Nishiyama, W. Higemoto, W. Moon, E. Tanaka, and E. S. Otabe, Phys. Rev. B 72, 014464 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014464
35.
35.J. Van Lierop, K. W. Lin, J. Y. Guo, H. Ouyang, and B. Southern, Phys. Rev. B 75, 134409 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.134409
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936250
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936250
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936250
2015-11-17
2016-12-07

Abstract

Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature () of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the by adjusting the atomic cohesive energy. The is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxialinterface. A numerical match between predictions and measurements reveals that the of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936250.html;jsessionid=d7-IfUvFGIT97J0EOin11iZ3.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936250&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936250&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936250'
Right1,Right2,Right3,