Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936251
1.
1.J.E. Geusic, H.M. Marcos, and L.G. Van Uitert, Appl. Phys. Lett. 4, 182184 (1964).
http://dx.doi.org/10.1063/1.1753928
2.
2.F.J. Duarte, Tunable laser applications (CRC press, 2010).
3.
3.M.M. Collur and T. Debroy, Metall. Mater. Trans. B 20, 277286 (1989).
http://dx.doi.org/10.1007/BF02825608
4.
4.J.R. Berretta, W. de Rossi, M. David Martins das Neves, I. Alves de Almeida, and N. Dias Vieira Junior, Optics and Lasers in Engineering 45(9), 960966 (2007).
http://dx.doi.org/10.1016/j.optlaseng.2007.02.001
5.
5.M.N. Ashfold, F. Claeyssens, G.M. Fuge, and S.J. Henley, Chemical Society Reviews 33(1), 2331 (2004).
http://dx.doi.org/10.1039/b207644f
6.
6.P.R. Wilmott and J.R. Huber, Rev. Mod. Phys. 72, 315328 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.315
7.
7.A. De Giacomo, V.A. Shakhatov, G.S. Senesi, and F. Prudenzano, Appl. Surf. Sci. 186, 533537 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00763-2
8.
8.I. Etsion, Journal of Tribology 127(1), 248253 (2005).
http://dx.doi.org/10.1115/1.1828070
9.
9.J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, Journal of Laser Applications 24(4), 042006 (2012).
http://dx.doi.org/10.2351/1.4712658
10.
10.B.K. Nayak and M.C. Gupta, Optics and Lasers in Engineering 48(10), 940949 (2010).
http://dx.doi.org/10.1016/j.optlaseng.2010.04.010
11.
11.R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, and R.E. Smalley, Nature 388(6639), 255257 (1997).
http://dx.doi.org/10.1038/42206
12.
12.S. Moussa, V. Abdelsayed, and M. Samy El-Shall, Chemical Physics Letters 510(4), 179184 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.026
13.
13.M. S. Dawood, A. Hamdan, and J. Margot, AIP Advances 5(10), 107143 (2015).
http://dx.doi.org/10.1063/1.4935100
14.
14.C. Aragón and J.A. Aguilera, Spectrochimica Acta Part B 63, 893916 (2008).
http://dx.doi.org/10.1016/j.sab.2008.05.010
15.
15.N. Farid, S. Bashir, and K. Mahmood, Physica Scripta 85(1), 015702 (2012).
http://dx.doi.org/10.1088/0031-8949/85/01/015702
16.
16.S. Bashir, N. Farid, K. Mahmood, and M.S. Rafique, Applied Physics A 107(1), 203212 (2012).
http://dx.doi.org/10.1007/s00339-011-6730-4
17.
17.M.S. Dawood and J. Margot, AIP Advances 4, 037111 (2014).
http://dx.doi.org/10.1063/1.4869076
18.
18.J.A. Aguilera, J. Bengoechea, and C. Aragón, Spectrochimica Acta Part B 59, 461469 (2004).
http://dx.doi.org/10.1016/j.sab.2004.01.015
19.
19.J.A. Aguilera and C. Aragón, Applied surface science 197, 273280 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00382-3
20.
20.N. Kawahara, J.L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, Applied Physics B 86(4), 605614 (2007).
http://dx.doi.org/10.1007/s00340-006-2531-4
21.
21.J.A. Aguilera, C. Aragón, and J. Bengoechea, Applied optics 42(30), 59385946 (2003).
http://dx.doi.org/10.1364/AO.42.005938
22.
22.E.M. Monge, C. Aragón C., and J.A. Aguilera, Applied Physics A 69(1), S691S694 (1999).
http://dx.doi.org/10.1007/s003390051507
23.
23.A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, G. Cristoforetti, S. Legnaioli, V. Palleschi, and E. Tognoni, Spectrochimica Acta Part B: Atomic Spectroscopy 63(9), 980987 (2008).
http://dx.doi.org/10.1016/j.sab.2008.06.010
24.
24.H.R. Griem, Plasma spectroscopy (McGraw-Hill, New York, 1964).
25.
25.N. Konjević, A. Lesage, J.R. Fuhr, and W.L. Wiese, Journal of Physical and Chemical Reference Data 31(3), 819927 (2002).
http://dx.doi.org/10.1063/1.1486456
26.
26.S.S. Harilal, B. O’Shay, M.S. Tillack, and M.V. Mathew, J. Appl. Phys. 98, 013306 (2005).
http://dx.doi.org/10.1063/1.1977200
27.
27.N.M. Shaikh, S. Hafeez, B. Rashid, and M.A. Baig, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 44(2), 371379 (2007).
28.
28.National Institute of Standards and Technology, available on line at: http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
29.
29.MS Dawood, A Hamdan, and J Margot, submitted to Spectrochimica Acta Part B: Atomic Spectroscopy (2015).
30.
30.M.S. Tillack, D.W. Blair, and S.S. Harilal, Nanotechnology 15(3), 390 (2004).
http://dx.doi.org/10.1088/0957-4484/15/3/028
31.
31.V. Narayanan and R.K. Thareja, Applied surface science 222(1), 382393 (2004).
http://dx.doi.org/10.1016/j.apsusc.2003.09.038
32.
32.O. Barthélemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T.W. Johnston, S. Laville, and B. Le Drogoff, Spectrochimica Acta Part B: Atomic Spectroscopy 60(7), 905914 (2005).
http://dx.doi.org/10.1016/j.sab.2005.07.001
33.
33.J.A. Aguilera and C. Aragón, Spectrochimica Acta Part B: Atomic Spectroscopy 59(12), 18611876 (2004).
http://dx.doi.org/10.1016/j.sab.2004.08.003
34.
34.K.J. Grant and G.L. Paul, Applied spectroscopy 44(8), 13491354 (1990).
http://dx.doi.org/10.1366/000370290789619469
35.
35.Y.I. Lee, K. Song, H.K. Cha, J.M. Lee, M.C. Park, G.H. Lee, and J. Sneddon, Appl. Spectrosc. 51, 959964 (1997).
http://dx.doi.org/10.1366/0003702971941610
36.
36.Q.L. Ma, V. Motto-Ros, W.Q. Lei, M. Boueri, X.S. Bai, L.J. Zheng, H.P. Zeng, and J Yu, Spectrochimica Acta Part B: Atomic Spectroscopy 65(11), 896907 (2010).
http://dx.doi.org/10.1016/j.sab.2010.08.005
37.
37.W.F. Luo, X.X. Zhao, Q.B. Sun, C.X. Gao, J. Tang, and W. Zhao, Nuclear Instruments and methods in physics Research A 637, S158S160 (2011).
http://dx.doi.org/10.1016/j.nima.2010.02.046
38.
38.S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, and A.C. Gaeris, Journal of Applied Physics 93(5), 23802388 (2003).
http://dx.doi.org/10.1063/1.1544070
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936251
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936251
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936251
2015-11-17
2016-09-28

Abstract

The spatial variation of the characteristics of an aluminumplasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936251.html;jsessionid=IF_u4Hms4fyJGMm01oE-OzZL.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936251&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936251&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936251'
Right1,Right2,Right3,