Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936421
1.
1.S. Schneider, J. Struct. Eng. 124, 1125 (1998).
http://dx.doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
2.
2.Q. S. Li, J. Q. Fang, and A. P. Jeary, Eng. Struct. 22, 525 (2000).
http://dx.doi.org/10.1016/S0141-0296(98)00124-2
3.
3.S Lagomarsino and C. Calderini, Eng. Struct. 27, 846 (2005).
http://dx.doi.org/10.1016/j.engstruct.2005.01.008
4.
4.S. T. Purcell, P. Vincent, C. Journet, and V. T. Bihn, Phys. Rev. Lett. 89, 276103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.276103
5.
5.V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEune, Nature 431, 284 (2004).
http://dx.doi.org/10.1038/nature02905
6.
6.R. B. Karabalin, L. G. Villanueva, M. H. Matheny, J. E. Sader, and M. L. Roukes, Phys. Rev. Lett. 108, 236101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236101
7.
7.K. Eom, H. S. Park, D.S. Yoon, and T. Kwon, Phys. Rep. 503, 115 (2011).
http://dx.doi.org/10.1016/j.physrep.2011.03.002
8.
8.S. Chan Jun, X. M. H. Huang, M. Manolidis, C. A. Zorman, M. Mehregany, and J. Hone, Nanotechnology 17, 1506 (2006).
http://dx.doi.org/10.1088/0957-4484/17/5/057
9.
9.X. Wei, Q. Chen, S. Xu, L. Peng, and J. Zuo, Adv. Funct. Mater. 19, 1753 (2009).
http://dx.doi.org/10.1002/adfm.200900105
10.
10.K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007).
http://dx.doi.org/10.1021/nl0721113
11.
11.K. Jensen, K. Kim, and A. Zettl, Nat. Nanotechnol. 3, 533 (2008).
http://dx.doi.org/10.1038/nnano.2008.200
12.
12.M.S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E.C. Bullard, E. Colinet, L. Duraffourg, and M.L. Roukes, Nature Nanotechol. 7, 602 (2012).
http://dx.doi.org/10.1038/nnano.2012.119
13.
13.S. Dohn, W. Svendsen, and A. Boisen, Rev. Sci. Instrum. 78, 103303 (2007).
http://dx.doi.org/10.1063/1.2804074
14.
14.S. Dohn, S. Schmid, F. Amiot, and A. Boisen, Appl. Phys. Lett. 97, 044103 (2010).
http://dx.doi.org/10.1063/1.3473761
15.
15.E. Sage, A. Brenac, T. Alava, R. Morel, C. Dupre, M.S. Hanay, M.L. Roukes, L. Duraffourg, C. Masselon, and S. Hentz, Nat. Commun. 6, 6482 (2015).
http://dx.doi.org/10.1038/ncomms7482
16.
16.I. Stachiv, A.I. Fedorchenko, and Y.-L. Chen, Appl. Phys. Lett. 100, 093110 (2012).
http://dx.doi.org/10.1063/1.3691195
17.
17.I. Stachiv, Sens. Lett. 11, 613 (2013).
http://dx.doi.org/10.1166/sl.2013.2926
18.
18.S. Kim, D. Lee, M. Yun, S. Jeon, and T. Thundat, T., Appl. Phys. Lett. 102, 024103 (2013).
http://dx.doi.org/10.1063/1.4788740
19.
19.I. Stachiv, T.-H. Fang, and Y.-R. Jeng, Sensors 15, 19351 (2015).
http://dx.doi.org/10.3390/s150819351
20.
20.I. Stachiv, D. Vokoun, and Y.-R. Jeng, Appl. Phys. Lett. 104, 083102 (2014).
http://dx.doi.org/10.1063/1.4866417
21.
21.B. Illic, S. Krylov, and H. C. Craighead, J. of Appl. Phys. 108, 044317 (2010).
http://dx.doi.org/10.1063/1.3474987
22.
22.I. Stachiv, J. Zapomel, and Y.-L. Chen, J. of Appl. Phys. 115, 124304 (2014).
http://dx.doi.org/10.1063/1.4869415
23.
23.R. Dingreville, J. Qu, and M. Cherkaoui, J. Mech. Phys. Solids 53, 1827 (2004).
http://dx.doi.org/10.1016/j.jmps.2005.02.012
24.
24.S.M.M. Kafumbe, J.S. Burdess, and A.J. Harris, J. Micromech. Microeng. 15, 1033 (2005).
http://dx.doi.org/10.1088/0960-1317/15/5/020
25.
25.S. Perisanu, V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, and S.T. Puricell, Phys. Rev. B 77, 165434 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165434
26.
26.A.A. Semenov, S.F. Karmanenko, V.E. Demidov, B.A. Kalinikos, G. Srinivasan, A.N Slavin, and J.V. Mantese, Appl. Phys. Lett. 88, 033503 (2006).
http://dx.doi.org/10.1063/1.2166489
27.
27.E. Salahun, P. Queffelec, G. Tanne, A.L. Adenot, and O. Acher, J. Appl. Phys. 91, 5449 (2002).
http://dx.doi.org/10.1063/1.1461066
28.
28.A. Boisen, S. Dohn, S.S. Keller, S. Smid, and M. Tenje, Rep. Prog. in Phys. 74, 0.36101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/3/036101
29.
29.I. Stachiv, J. Appl. Phys. 115, 214310 (2014).
http://dx.doi.org/10.1063/1.4880396
30.
30.F.J. Elmer and M. Dreier, J. Appl. Phys. 81, 7709 (1998).
http://dx.doi.org/10.1063/1.365379
31.
31.J.E. Sader, J. Appl. Phys. 84, 64 (1998).
http://dx.doi.org/10.1063/1.368002
32.
32.S. Basak, A. Raman, and S.V. Garimella, J. Appl. Phys. 99, 114906 (2006).
http://dx.doi.org/10.1063/1.2202232
33.
33.C.A. Van Eysden and J.E. Sader, Phys. Fluids 18, 123102 (2006).
http://dx.doi.org/10.1063/1.2395967
34.
34.M.R. Paul and M.C. Cross, Phys. Rev. Lett. 92, 235501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.235501
35.
35.A. Raman, J. Melchar, and R. Tung, Nano Today 3, 20 (2008).
http://dx.doi.org/10.1016/S1748-0132(08)70012-4
36.
36.L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, England, 1987).
37.
37.N.N. Lebedev, I.P. Skalskaya, and Y.S. Ufland, Worked Problems in Applied Mathematics (Dover Publications, Inc, New York, USA, 1979).
38.
38.S. Sawano, T. Arie, and S. Akita, Nano Lett. 10, 3395 (2010).
http://dx.doi.org/10.1021/nl101292b
39.
39.S. P. Timoshenko and J.M. Gere, Theory of Elastic Stability, second ed. (McGraw-Hill, Singapore, 1961).
40.
40.S.S. Verbridge, D.F. Shapiro, H.G. Craighead, and J.M. Parpia, Nano Lett. 7, 1728 (2007).
http://dx.doi.org/10.1021/nl070716t
41.
41.S. Schmid, S. Dohn, and A. Boisen, Sensors 10, 8092 (2010).
http://dx.doi.org/10.3390/s100908092
42.
42.I. Kozinsky, H.W.Ch. Postma, I. Bargatin, and M.L. Roukes, Appl. Phys. Lett. 88, 253101 (2006).
http://dx.doi.org/10.1063/1.2209211
43.
43.L.G. Villanueva, R.B. Karabalin, M.H. Matheny, D. Chi, J.E. Sader, and M.L. Roukes, Phys. Rev. B 87, 024304 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024304
44.
44.S.S. Verbridge, L.M. Bellan, J.M. Parpia, and H.G. Craighead, Nano Lett. 6, 2109 (2006).
http://dx.doi.org/10.1021/nl061397t
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936421
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936421
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936421
2015-11-19
2016-12-09

Abstract

Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the -factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the -factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the -factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936421.html;jsessionid=0XzvC75HTvF54GE1QXCvJuIw.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936421&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936421&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936421'
Right1,Right2,Right3,