Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936422
1.
1.T. Miyamoto, K. Nagashima, N. Sakai, and M. Murakami, Physica C 349, 69 (2001).
http://dx.doi.org/10.1016/S0921-4534(00)01529-X
2.
2.Y. H. Zhou and H. D. Yong, Phys. Rev. B 76, 094523 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.094523
3.
3.H. D. Yong and Y. H. Zhou, J. Appl. Phys. 114, 023902 (2013).
http://dx.doi.org/10.1063/1.4811531
4.
4.H. D. Yong, Z. Jing, and Y. H. Zhou, IEEE Trans. Appl. Supercond. 23, 8002806 (2013).
http://dx.doi.org/10.1109/TASC.2013.2262657
5.
5.H. D. Yong, Z. Jing, and Y. H. Zhou, Int. J. Solids Struct. 51, 886 (2014).
http://dx.doi.org/10.1016/j.ijsolstr.2013.11.013
6.
6.A. He, C. Xue, H. D. Yong, and Zhou, Physica C 492, 25 (2013).
http://dx.doi.org/10.1016/j.physc.2013.05.005
7.
7.Z. W. Gao and Y. H. Zhou, Supercond. Sci. Technol 21, 095010 (2008).
http://dx.doi.org/10.1088/0953-2048/21/9/095010
8.
8.Z. W. Gao and Y. H. Zhou, Mod. Phys. Lett. B 6, 825-834 (2009).
http://dx.doi.org/10.1142/S021798490901893X
9.
9.Z. W. Gao and Y. H. Zhou, Phys. Lett. A 372, 5261-5264 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.06.022
10.
10.J. Zeng, Y. H. Zhou, and H. D. Yong, J. Appl. Phys. 108, 033901 (2010).
http://dx.doi.org/10.1063/1.3456038
11.
11.J. Zeng, Y. H. Zhou, and H. D. Yong, J. Appl. Phys. 109, 093920 (2011).
http://dx.doi.org/10.1063/1.3585830
12.
12.F. Xue and Y. H. Zhou, J. Appl. Phys. 107, 113927 (2010).
http://dx.doi.org/10.1063/1.3399508
13.
13.W. J. Feng, Q. F. Liu, and X. Han, Mech. Res. Commun. 61, 36 (2014).
http://dx.doi.org/10.1016/j.mechrescom.2014.07.005
14.
14.W. J. Feng, Q. F. Liu, and R. K. L. Su, Theor. Appl. Fract. Mech. 74, 73 (2014).
http://dx.doi.org/10.1016/j.tafmec.2014.07.002
15.
15.G. Fuchs, P. Schätzle, G. Krabbes, S. Gruß, P. Verges, K.-H. Müller, J. Fink, and L. Schultz, Appl. Phys. Lett. 76, 2107 (2000).
http://dx.doi.org/10.1063/1.126278
16.
16.F. M. Sauerzopf, H. P. Wiesinger, H. W. Weber, G. W. Crabtree, and J.Z. Liu, Physica (Amsterdam) 162-164C, 751 (1989).
17.
17.R. B. van Dover, E. M. Gyorgy, L. F. Schneemeyer, J. W. Mitchell, K. V. Rao, R. Puzniak, and J. V. Waszczak, Nature (London) 342, 55 (1989).
http://dx.doi.org/10.1038/342055a0
18.
18.L. Civale, A. D. Marwick, M. W. Mcelfresh, T. K. Worthington, A. P. Malozemoff, F. Holtzberg, J. R. Thompson, and M. A. Kirk, Phys. Rev. Lett. 65, 1164 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1164
19.
19.H. W. Weber and G. W. Crabtree, in Studies of High-Temperature Superconductors, edited byA. V. Narlikar (Nova Science, New York, 1991).
20.
20.M. Murakami, M, S. Gotoh, H. Fujimoto, K. Yamaguchi, N. Koshizuka, and S. Tanaka, Supercond. Sci. Technol. 4, S43 (1991).
http://dx.doi.org/10.1088/0953-2048/4/1S/005
21.
21.M. Yoshida, N. Ogawa, I. Hirabaiashi, and S. Tanaka, Physica C 185–189, 2409 (1991).
http://dx.doi.org/10.1016/0921-4534(91)91329-3
22.
22.H. D. Yong and Y. H. Zhou, J. Appl. Phys. 104, 043907 (2008).
http://dx.doi.org/10.1063/1.2952042
23.
23.L. Ceniga and P. Diko, Physica C 385, 329 (2003).
http://dx.doi.org/10.1016/S0921-4534(02)02359-6
24.
24.Z. W. Gao, Y. H. Zhou, and K. Y. Lee, Comp. Mater. Sci. 50, 279 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.08.015
25.
25.D. K. Yi, Z. M. Xiao, and S. K. Tan, Eng. Fract. Mech. 109, 209 (2013).
http://dx.doi.org/10.1016/j.engfracmech.2013.06.008
26.
26.D. K. Yi, Z. M. Xiao, S. K. Tan, and M. Fan, Compos. Pt. B-Eng. 60, 60 (2014).
http://dx.doi.org/10.1016/j.compositesb.2013.12.032
27.
27.D. K. Yi, Z. M. Xiao, S. K. Tan, and Y. M. Zhang, Acta Mech. 225, 91 (2014).
http://dx.doi.org/10.1007/s00707-013-0954-7
28.
28.F. Xue and X. F. Gou, AIP Adv. 5, 047128 (2015).
http://dx.doi.org/10.1063/1.4918752
29.
29.H. D. Yong and Y. H. Zhou, Phys. Rev. B 76, 094523 (1999).
30.
30.D. A. Hills, P. A. Kelly, D. N. Dai, and D. N. Dai, Solition of Crack Problems: the Distributed Dislocation Technique (Kluwer, Dordrecht, 1996).
31.
31.F. Erdogan, Proc. Ann. Int. Conf. Fault Toler. Comput. 4, 1 (1978).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936422
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936422
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936422
2015-11-19
2016-09-25

Abstract

A simple model is proposed to investigate the interaction problem for a circular nonsuperconducting inclusion embedded in a high-superconducting matrix which contains an inclined crack, oriented at an arbitrary angle from the direction of the critical currents. The electromagnetic behavior is described by the critical state, the original Bean model. The perturbation brought upon by the circular inclusion and the crack on the critical current density is assumed to be negligible and not considered in this model. The distribution dislocation technology is applied to formulate the current problem. The stress intensity factors (SIFs) are obtained by solving the formulated singular integral equations. The effects of the crack angle, the elastic modulus, the inclusion-crack distance and the inclusion-crack size on the stress intensity factors are discussed in detail.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936422.html;jsessionid=g78k7V2Si0UIzD9_3_22Jqt9.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936422&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936422&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936422'
Right1,Right2,Right3,