Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936557
1.
1.D. B. Nielson, B. N. Ashcroft, and D. W. Doll, U.S. patent 8,568,541(29 October2013).
2.
2.G. D. Hugus, E. W. Sheridan, and G. W. Brooks, U.S. patent 8,250,985 (28 August 2012).
3.
3.R. J. Lee, W. Mock, Jr., J. R. Carney, W. H. Holt, G. I. Pangilinan, R. M. Gamache, J. M. Boteler, D. G. Bohl, J. Drotar, and G. W. Lawrence, in Shock Compression of Condensed Matter 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Baltimore, Maryland, America, 31 July-5 August 2006. edited byM. D. Furnish, M. Elert, T. P. Russell, and C. T. White (AIP Publishing, New York, 2006), pp. 169-174.
http://dx.doi.org/10.1063/1.2263291
4.
4.J. C. Lynch, J. M. Brannon, and J. J. Delfino, Chemosphere 47, 725 (2002).
http://dx.doi.org/10.1016/S0045-6535(02)00035-8
5.
6.
6.D. Spitzer, M. Comet, C. Baras, V. Pichot, and N. Piazzon, J. Phys. Chem. Solids 71, 100 (2010).
http://dx.doi.org/10.1016/j.jpcs.2009.09.010
7.
7.E. M. Hunt, S. Malcolm, M. L. Pantoya, and F. Davis, Int. J. Impact Eng. 36, 842 (2009).
http://dx.doi.org/10.1016/j.ijimpeng.2008.11.011
8.
8.M. L. Pantoya and J. J. Granier, J. Therm, Anal. Calorim. 85, 37 (2006).
http://dx.doi.org/10.1007/s10973-005-7342-z
9.
9.D. Stamatis, Z. Jiang, V. K. Hoffmann, M. Schoenitz, and E. L. Dreizin, Combust. Sci. and Tech. 181, 97 (2009).
http://dx.doi.org/10.1080/00102200802363294
10.
10.K. B. Plantier, M. L. Pantoya, and A. E. Gash, Combust. Flame 140, 299 (2005).
http://dx.doi.org/10.1016/j.combustflame.2004.10.009
11.
11.K. Sullivan, G. Young, and M. R. Zachariah, Combust. Flame 156, 302 (2009).
http://dx.doi.org/10.1016/j.combustflame.2008.09.011
12.
12.A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, A. N. Streletskiĭ, and V. E. Fortov, JETP Lett. 81, 311 (2005).
http://dx.doi.org/10.1134/1.1944069
13.
13.W. Mock, Jr. and W. H. Holt, in Shock Compression of Condensed Matter 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Baltimore, Maryland, America, 31 July-5 August 2005. edited byM. D. Furnish, M. Elert, T. P. Russell, and C. T. White (AIP Publishing, New York, 2006), pp. 1097-1100.
http://dx.doi.org/10.1063/1.2263514
14.
14.W. Mock, Jr. and J. T. Drotar, in Shock Compression of Condensed Matter 2007: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Waikoloa, Hawaii, America, 24-29 June 2007. edited byM. Elert, M. D. Furnish, R. Chau, N. Holmes, and J. Nguyen (AIP Publishing, New York, 2007), pp. 971-974.
15.
15.A. A. Denisaev, A. S. Shteinberg, and Al. Al. Berlin, Dokl. Phys. Chem., Part 2 414, 139 (2007).
http://dx.doi.org/10.1134/S001250160706005X
16.
16.M. N. Raftenberg, W. Mock, Jr., and G. C. Kirby, Int. J. Impact. Eng. 35, 1735 (2008).
http://dx.doi.org/10.1016/j.ijimpeng.2008.07.041
17.
17.J. Cai, F. Jiang, K. S. Vecchio, M. A. Meyers, and V. F. Nesterenko, in Shock Compression of Condensed Matter 2007: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Waikoloa, Hawaii, America, 24-29 June 2007. edited byM. Elert, M. D. Furnish, R. Chau, N. Holmes, and J. Nguyen (AIP Publishing, New York, 2007), pp. 723-726.
18.
18.J. Cai, S. M. Walley, R. J. A. Hunt, W. G. Proud, V. F. Nesterenko, and M. A. Meyers, Mater. Sci. Eng. A 472, 308 (2008).
http://dx.doi.org/10.1016/j.msea.2007.03.068
19.
19.E. B. Herbold, V. F. Nesterenko, D. J. Benson, J. Cai, K. S. Vecchio, F. Jiang, J. W. Addiss, S. M. Walley, and W. G. Proud, J. Appl. Phys. 104, 103903 (2008).
http://dx.doi.org/10.1063/1.3000631
20.
20.X. F. Zhang, J. Zhang, L. Qiao, A. S. Shi, Y. G. Zhang, Y. He, and Z. W. Guan, Mater. Sci. Eng. A 581, 48 (2013).
http://dx.doi.org/10.1016/j.msea.2013.05.063
21.
21.U. Scherf and E. J. W. List, Adv. Mater. 14, 477 (2002).
http://dx.doi.org/10.1002/1521-4095(20020404)14:7<477::AID-ADMA477>3.0.CO;2-9
22.
22.G. T. Gary, in ASM Handbook, edited by K. Howard and M. Dana (American Society for Metals, ASM International, Materials Park, 2008), pp. 462-476.
23.
23.F. Volk, in Advances in Analysis and Detection of Explosives: Proceedings of the 4th International Symposium on Analysis and Detection of Explosives, Jerusalem, Israel, 7 September -10 September 1992. edited byJ. Yinon (Springer, Netherlands, 1993), pp. 223-239.
http://dx.doi.org/10.1007/978-94-017-0639-1_23
24.
24.H. Wang, Y. Zheng, Q. Yu, Z. Liu, and W. Yu, J. Appl. Phys. 110, 074904 (2011).
http://dx.doi.org/10.1063/1.3644974
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936557
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936557
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936557
2015-11-20
2016-09-30

Abstract

Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936557.html;jsessionid=lgYlBEooEEL-tvikRsAoMmwR.x-aip-live-06?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936557&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936557&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936557'
Right1,Right2,Right3,