Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936559
1.
1.H. Mehdian, K. Hajisharifi, and A. Hasanbeigi, ApJ. 801, 89 (2015).
http://dx.doi.org/10.1088/0004-637X/801/2/89
2.
2.A. Spitkovsky, Astrophys. J. Lett. 682, L5 (2008).
http://dx.doi.org/10.1086/590248
3.
3.K.-I. Nishikawa, P. Hardee, G. Richardson, R. Preece, H. Sol, and G. J. Fishman, The Astrophysical Journal. 595, 555 (2003).
http://dx.doi.org/10.1086/377260
4.
4.M. Medvedev, Astrophys. Space Sci. 307, 245 (2007).
http://dx.doi.org/10.1007/s10509-006-9288-4
5.
5.P. Chang and A. Spitkovsky, J. Arons, Arons, Astrophys. J. 674, 378 (2008).
http://dx.doi.org/10.1086/524764
6.
6.F. Califano, N. Attico, F. Pegoraro, G. Bertin, and S.V. Bulanov, Phys. Rev. Lett. 86, 23 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5293
7.
7.F. Hass and G. Manfredi, Phys. Rev. E. 62, 2763 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.2763
8.
8.A. Bret, Phys. Plasmas. 14, 084503 (2007).
http://dx.doi.org/10.1063/1.2759886
9.
9.B. Hao, Z. M. Sheng, C. Ren, and J. Zhang, Physical Review E. 79, 046409 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.046409
10.
10.B. Hao, W. J. Ding, Z. M. Sheng, C. Ren, and J. Zhang, Physical Review E. 80, 066402 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.066402
11.
11.F. Califano, R. Prandi, F. Pegoraro, and S. V. Bulanov, Physical Review E. 58, 7837 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.7837
12.
12.A. Debayle and V. T. Tikhonchuk, Physical Review E. 78, 066404 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.066404
13.
13.M. W. Verdon and D. B. Melrose, Physical Review E. 77, 046403 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.046403
14.
14.K. F. Lee, Phys. Rev. 181, 447 (1969).
http://dx.doi.org/10.1103/PhysRev.181.447
15.
15.B. K. Shivamoggi, Astrophys. Space Sci. 83, 177 (1982).
http://dx.doi.org/10.1007/BF00648549
16.
16.S. Saito and J –I. Sakai, Phys. Plasmas 11, 859 (2004).
http://dx.doi.org/10.1063/1.1641784
17.
17.H. Mehdian, K. Hajisharifi, and A. Hasanbeigi, physics letters A. 377, 34 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.06.003
18.
18.H. Mehdian, A. Hasanbeigi, and K. Hajisharifi, Astrophys. Space Sci. 346, 2 (2013).
http://dx.doi.org/10.1007/s10509-013-1479-1
19.
19.H. Mehdian, K. Hajisharifi, and A. Hasanbeigi, Phys. Plasmas 21, 072106 (2014).
http://dx.doi.org/10.1063/1.4886358
20.
20.M. Tatarakis, F. N. Beg, E. L. Clark, A. E. Dangor, R. D. Edwards, R. G. Evans, T. J. Goldsack, K. W. D. Ledingham, P. A. Norreys, M. A. Sinclair, M-S. Wei, M. Zepf, and K. Krushelnick, Phys. Rev. Lett. 90, 175001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.175001
21.
21.M. J. Michno and R. Schlickeiser, The Astrophysical Journal 714, 868880 (2010).
http://dx.doi.org/10.1088/0004-637X/714/1/868
22.
22.D. Bohm and E. P. Gross, Physical Review. 74, 624-624 (1948).
http://dx.doi.org/10.1103/PhysRev.74.624
23.
23.B. D. Fried, Phys. Fluids. 2, 337 (1959).
http://dx.doi.org/10.1063/1.1705933
24.
24.D. Shaikh and P. K. Shukla, Phys. Rev. Lett. 99, 125002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.125002
25.
25.G. Brodin, M. Marklund, B. Eliasson, and P. K. Shukla, Phys. Rev. Lett. 98, 125001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.125001
26.
26.A. M. Mirza and P. K. Shukla, Phys. Plasmas. 15, 022106 (2008).
http://dx.doi.org/10.1063/1.2842366
27.
27.G. Brodin, M. Marklund, B. Eliasson, and P. K. Shukla, Phys. Rev. Lett. 98, 125001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.125001
28.
28.R. Bingham, J. T. Mendonca, and P.K. Shukla, Plasma Phys. Control. Fusion. 46, R1 (2004).
http://dx.doi.org/10.1088/0741-3335/46/1/R01
29.
29.M. Marklund, P. K. Shukla, L. Stenflo, G. Brodin, and M. Servin, Plasma Phys. Control, Fusion. 47, L25 (2005).
http://dx.doi.org/10.1088/0741-3335/47/7/L02
30.
30.J. Cao, H. Ren, Z. Wu, and P. K. Chu, Phys. Plasmas. 15, 012110 (2008).
http://dx.doi.org/10.1063/1.2833588
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936559
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936559
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936559
2015-11-20
2016-09-27

Abstract

In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936559.html;jsessionid=RCkUgKCpCmy1eLX5jkUI0wRr.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936559&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936559&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936559'
Right1,Right2,Right3,