Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936560
1.
1.K Liew, X He, and C Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation,” Acta Materialia 52(9), 2521-7 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.01.043
2.
2.K Liew, C Wong, X He, M Tan, and S Meguid, “Nanomechanics of single and multiwalled carbon nanotubes,” Physical Review B 69(11), 115429 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115429
3.
3.J-W Jiang, J-S Wang, and B Li, “Young’s modulus of graphene: a molecular dynamics study,” Physical Review B 80(11), 113405 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.113405
4.
4.C Lee, X Wei, JW Kysar, and J Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” science 321(5887), 385-8 (2008).
http://dx.doi.org/10.1126/science.1157996
5.
5.Y Zheng, N Wei, Z Fan, L Xu, and Z Huang, “Mechanical properties of grafold: a demonstration of strengthened graphene,” Nanotechnology 22(40), 405701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/40/405701
6.
6.J Hone, M Whitney, C Piskoti, and A Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Physical Review B 59(4), R2514 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R2514
7.
7.M Dresselhaus, G Dresselhaus, and P Avouris, Topics in Applied Physics, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, New York, 2000).
8.
8.P Kim, L Shi, A Majumdar, and P McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical review letters 87(21), 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
9.
9.AA Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao et al., “Superior thermal conductivity of single-layer graphene,” Nano letters 8(3), 902-7 (2008).
http://dx.doi.org/10.1021/nl0731872
10.
10.I Ponomareva, LA Chernozatonskii, AN Andriotis, and M Menon, “Formation pathways for single-wall carbon nanotube multiterminal junctions,” New Journal of Physics 5(1), 119 (2003).
http://dx.doi.org/10.1088/1367-2630/5/1/119
11.
11.AC Neto, F Guinea, N Peres, KS Novoselov, and AK Geim, “The electronic properties of graphene,” Reviews of modern physics 81(1), 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
12.
12.AN Andriotis, M Menon, D Srivastava, and L Chernozatonskii, “Rectification properties of carbon nanotube Y-junctions,” Physical review letters 87(6), 066802 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.066802
13.
13.EG Noya, D Srivastava, and M Menon, “Heat-pulse rectification in carbon nanotube Y junctions,” Physical Review B Condensed Matter And Materials Physics 79(11), 115432 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115432
14.
14.J Li, C Papadopoulos, and J Xu, “Nanoelectronics: Growing Y-junction carbon nanotubes,” Nature 402(6759), 253-4 (1999).
15.
15.L Chico, VH Crespi, LX Benedict, SG Louie, and ML Cohen, “Pure carbon nanoscale devices: Nanotube heterojunctions,” Physical Review Letters 76(6), 971-4 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.971
16.
16.AN Andriotis, M Menon, D Srivastava, and L Chernozatonskii, “Ballistic switching and rectification in single wall carbon nanotube Y junctions,” Applied Physics Letters 79(2), 266-8 (2001).
http://dx.doi.org/10.1063/1.1385194
17.
17.M Menon and D Srivastava, “Carbon nanotube” T junctions”: Nanoscale metal-semiconductor-metal contact devices,” Physical review letters 79(22), 4453-6 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4453
18.
18.N Wang, Z-K Tang, G-D Li, and J Chen, “Materials science: Single-walled 4 Å carbon nanotube arrays,” Nature 408, 50-1 (2000).
http://dx.doi.org/10.1038/35044195
19.
19.F Meng, S Shi, D Xu, and C Chan, “Mechanical properties of ultrathin carbon nanotube junctions,” Modelling and Simulation in Materials Science and Engineering 14(5), S1 (2006).
http://dx.doi.org/10.1088/0965-0393/14/5/S01
20.
20.W Liu, F Meng, and S Shi, “A theoretical investigation of the mechanical stability of single-walled carbon nanotube 3-D junctions,” Carbon 48(5), 1626-35 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.01.003
21.
21.L Zhou and S Shi, “Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage,” Computational Materials Science 23(1), 166-74 (2002).
http://dx.doi.org/10.1016/S0927-0256(01)00233-6
22.
22.I Zsoldos and I Laszlo, “Computation of the loading diagram and the tensile strength of carbon nanotube networks,” Carbon 47(5), 1327-34 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.01.017
23.
23.J Romo-Herrera, M Terrones, H Terrones, S Dag, and V Meunier, “Covalent 2D and 3D networks from 1D nanostructures: designing new materials,” Nano letters 7(3), 570-6 (2007).
http://dx.doi.org/10.1021/nl0622202
24.
24.VR Coluci, NM Pugno, SO Dantas, DS Galvao, and A Jorio, “Atomistic simulations of the mechanical properties of ’super’carbon nanotubes,” Nanotechnology 18(33), 335702 (2007).
http://dx.doi.org/10.1088/0957-4484/18/33/335702
25.
25.M Terrones, F Banhart, N Grobert, J-C Charlier, H Terrones, and P Ajayan, “Molecular junctions by joining single-walled carbon nanotubes,” Physical review letters 89(7), 075505 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.075505
26.
26.A Krasheninnikov and F Banhart, “Engineering of nanostructured carbon materials with electron or ion beams,” Nature materials 6(10), 723-33 (2007).
http://dx.doi.org/10.1038/nmat1996
27.
27.C Jin, K Suenaga, and S Iijima, “Plumbing carbon nanotubes,” Nature Nanotechnology 3(1), 17-21 (2007).
http://dx.doi.org/10.1038/nnano.2007.406
28.
28.J-M Ting and C-C Chang, “Multijunction carbon nanotube network,” Applied physics letters 80(2), 324-5 (2002).
http://dx.doi.org/10.1063/1.1432442
29.
29.C Hu, S Wu, Y Wen, Y Yang, and Z Zhu, “Structural Design and Two-Dimensional Conductivity of Sheet-Tube Frameworks,” The Journal of Physical Chemistry C 114(46), 19673-7 (2010).
http://dx.doi.org/10.1021/jp1083289
30.
30.T Matsumoto and S Saito, “Geometric and electronic structure of new carbon-network materials: Nanotube array on graphite sheet,” Journal of the Physical Society of Japan 71, 2765 (2002).
http://dx.doi.org/10.1143/JPSJ.71.2765
31.
31.D Baowan, BJ Cox, and JM Hill, “Two least squares analyses of bond lengths and bond angles for the joining of carbon nanotubes to graphenes,” Carbon 45(15), 2972-80 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.09.045
32.
32.G Loh, E Teo, and B Tay, “Interpillar phononics in pillared-graphene hybrid nanostructures,” Journal of Applied Physics 110(8), 083502-6 (2011).
http://dx.doi.org/10.1063/1.3651089
33.
33.V Varshney, SS Patnaik, AK Roy, G Froudakis, and BL Farmer, “Modeling of thermal transport in pillared-graphene architectures,” ACS nano 4(2), 1153-61 (2010).
http://dx.doi.org/10.1021/nn901341r
34.
34.FD Novaes, R Rurali, and P Ordejón, “Electronic transport between graphene layers covalently connected by carbon nanotubes,” ACS nano 4(12), 7596-602 (2010).
http://dx.doi.org/10.1021/nn102206n
35.
35.RP Wesołowski and AP Terzyk, “Pillared graphene as a gas separation membrane,” Physical Chemistry Chemical Physics 13(38), 17027-9 (2011).
http://dx.doi.org/10.1039/c1cp21590f
36.
36.GK Dimitrakakis, E Tylianakis, and GE Froudakis, “Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage,” Nano letters 8(10), 3166-70 (2008).
http://dx.doi.org/10.1021/nl801417w
37.
37.Z Fan, J Yan, L Zhi, Q Zhang, T Wei, J Feng et al., “A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors,” Advanced materials 22(33), 3723-8 (2010).
http://dx.doi.org/10.1002/adma.201001029
38.
38.Y Zhu, L Li, C Zhang, G Casillas, Z Sun, Z Yan et al., “A seamless three-dimensional carbon nanotube graphene hybrid material,” Nature communications 3, 1225 (2012).
http://dx.doi.org/10.1038/ncomms2234
39.
39.F Du, D Yu, L Dai, S Ganguli, V Varshney, and A Roy, “Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance,” Chemistry of Materials 23(21), 4810-6 (2011).
http://dx.doi.org/10.1021/cm2021214
40.
40.D Kondo, S Sato, and Y Awano, “Self-organization of Novel Carbon Composite Structure: Graphene Multi-Layers Combined Perpendicularly with Alianed Carbon Nanotubes,” Applied physics express 1(7), (2008).
http://dx.doi.org/10.1143/APEX.1.074003
41.
41.LL Zhang, Z Xiong, and X Zhao, “Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation,” Acs Nano 4(11), 7030-6 (2010).
http://dx.doi.org/10.1021/nn102308r
42.
42.RK Paul, M Ghazinejad, M Penchev, J Lin, M Ozkan, and CS Ozkan, “Synthesis of a Pillared Graphene Nanostructure: A Counterpart of Three-Dimensional Carbon Architectures,” Small 6(20), 2309-13 (2010).
http://dx.doi.org/10.1002/smll.201000525
43.
43.AA Kane, T Sheps, ET Branigan, VA Apkarian, MH Cheng, JC Hemminger et al., “Graphitic electrical contacts to metallic single-walled carbon nanotubes using Pt electrodes,” Nano letters 9(10), 3586-91 (2009).
http://dx.doi.org/10.1021/nl9017995
44.
44.S Sihn, V Varshney, AK Roy, and BL Farmer, “Prediction of 3D elastic moduli and Poisson’s ratios of pillared graphene nanostructures,” Carbon 50(2), 603-11 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.09.019
45.
45.S Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of Computational Physics 117(1), 1-19 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
46.
46.SJ Stuart, AB Tutein, and JA Harrison, “A reactive potential for hydrocarbons with intermolecular interactions,” The Journal of Chemical Physics 112, 6472 (2000).
http://dx.doi.org/10.1063/1.481208
47.
47.T Ragab, A multi-scale electro-thermo-mechanical analysis of single walled carbon nanotubes (State University of New York, 2010).
48.
48.HJ Berendsen, JPM Postma, WF van Gunsteren, A DiNola, and J Haak, “Molecular dynamics with coupling to an external bath,” The Journal of chemical physics 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
49.
49.M Wang, C Yan, L Ma, N Hu, and M Chen, “Effect of defects on fracture strength of graphene sheets,” Computational Materials Science 54, 236-9 (2012).
http://dx.doi.org/10.1016/j.commatsci.2011.10.032
50.
50.A Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering 18(1), 015012 (2010).
http://dx.doi.org/10.1088/0965-0393/18/1/015012
51.
51.Nardelli M Buongiorno, J-L Fattebert, D Orlikowski, C Roland, Q Zhao, and J Bernholc, “Mechanical properties, defects and electronic behavior of carbon nanotubes,” Carbon 38(11), 1703-11 (2000).
http://dx.doi.org/10.1016/S0008-6223(99)00291-2
52.
52.Ragab CB Tarek, “A framework for stress computation in single-walled carbon nanotubes under uniaxial tension,” Computational Materials Science 46, 1135-43 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.05.022
53.
53.M. Buongiorno, J-LF Nardelli, D. Orlikowski, C. Roland, Q. Zhao, and J Bernholc, “Mechanical properties, defects and electronic behavior of carbon nanotubes,” Carbon 38, 1703-11 (2000).
http://dx.doi.org/10.1016/S0008-6223(99)00291-2
54.
54.Q Pei, Y Zhang, and V Shenoy, “A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene,” Carbon 48(3), 898-904 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.11.014
55.
55.J Park and V Prakash, “Thermal transport in 3D pillared SWCNT–graphene nanostructures,” Journal of Materials Research 28, 940-51 (2013).
http://dx.doi.org/10.1557/jmr.2012.395
56.
56.L Xu, N Wei, Y Zheng, Z Fan, H-Q Wang, and J-C Zheng, “Graphene-nanotube 3D networks: intriguing thermal and mechanical properties,” Journal of Materials Chemistry 22(4), 1435-44 (2012).
http://dx.doi.org/10.1039/C1JM13799A
57.
57.M.D Frogley, D. Ravich, and H. D. Wagner, “Mechanical properties of carbon nanoparticle-reinforced elastomer,” Composites Science and Technology 63(11), 1647-1654 (2003).
http://dx.doi.org/10.1016/S0266-3538(03)00066-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936560
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936560
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936560
2015-11-20
2016-12-02

Abstract

The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS) in carbon nanotube (CNT)-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. It provided a reliable model for CNT, GS and their junctions. The results revealed that the connection of CNT to the GS with a hole could improve the mechanical properties of defective GS, which appeared to be independent of CNT type. It was found that the high strength C-C bonds postpone the crack propagation and motivates new cracknucleation. When a hole or CNT placed on the GS, it caused stress concentration, exactly along a line on its side. The lower mechanical properties were consequently associated with cracknucleation and propagation on both sides in a way that cracks encountered each other during the failure; while, the cracks in pristine GS propagate parallel to each other and could not encounter each other.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936560.html;jsessionid=tUN-uqI0CIG1N5PHQZd-EDh6.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936560&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936560&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936560'
Right1,Right2,Right3,