Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936561
1.
1.A. Chuvilin, U. Kaiser, E. Bichoutskaia, N. A. Besley, and A. N. Khlobystov, Nature Chem. 2, 450 (2010).
http://dx.doi.org/10.1038/nchem.644
2.
2.P. Melinon, B. Masenelli, F. Tournus, and A. Perez, Nature Mat. 6, 479 (2007).
http://dx.doi.org/10.1038/nmat1914
3.
3.A. Fernando, K. L. D. M. Weerawardene, N. V. Karimova, and C. M. Aikens, Chem. Rev. 115, 6112 (2015);
http://dx.doi.org/10.1021/cr500506r
3.J. Heinzelmann, A. Koop, S. Proch, G. F. Ganteför, R. Lazarski, and M. Sierka, J. Phys. Chem. Lett. 5, 2642 (2014).
http://dx.doi.org/10.1021/jz501181c
4.
4.G. L. Gutsev, C. A. Weatherford, P. Jena, E. Johnson, and B. R. Ramachandran, Chem. Phys. Lett. 556, 211 (2013);
http://dx.doi.org/10.1016/j.cplett.2012.11.054
4.M. J. Han, T. Ozaki, and J. Yu, J. Chem. Phys. 123, 034306 (2005).
http://dx.doi.org/10.1063/1.1953387
5.
5.Q. Wang, Q. Sun, and P. Jena, J. Chem. Phys. 129, 164714 (2008);
http://dx.doi.org/10.1063/1.3001925
5.S. F. Vyboishchikov and J. Sauer, J. Phys. Chem. A 105, 8588 (2001).
http://dx.doi.org/10.1021/jp012294w
6.
6.S. Li and D. A. Dixon, J. Phys. Chem. A 110, 6231 (2006);
http://dx.doi.org/10.1021/jp060735b
6.N. O. Jones, B. V. Reddy, F. Rasouli, and S. N. Khanna, Phys. Rev. B 73, 119901 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.119901
7.
7.X. Shen, P. B. Allen, J. T. Muckerman, J. W. Davenport, and J.-C. Zheng, Nano Lett. 7, 2267 (2007);
http://dx.doi.org/10.1021/nl070788k
7.A. R. Botello-Méndez, F. López-Urias, M. Terrones, and H. Terrones, Chem. Phys. Lett. 492, 82 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.04.017
8.
8.S. V. Kershaw, A. S. Susha, and A. L. Rogach, Chem. Soc. Rev. 42, 3033 (2013);
http://dx.doi.org/10.1039/c2cs35331h
8.A. D. Lewoczko, J. J. Belbruno, and S. T. Bromley, Chem. Phys. Lett. 556, 207 (2013).
http://dx.doi.org/10.1016/j.cplett.2012.11.049
9.
9.K. S. Molek, T. D. Jaeger, and M. A. Duncan, J. Chem. Phys. 123, 144313 (2005).
http://dx.doi.org/10.1063/1.2050650
10.
10.Q. Sun, M. Sakurai, Q. Wang, J. Z. Yu, G. H. Wang, K. Sumiyama, and Y. Kawazoe, Phys. Rev. B 62, 8500 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8500
11.
11.T. Futschek, J. Hafner, and M. Marsman, J. Phys. : Condens. Matter 18, 9703 (2006).
http://dx.doi.org/10.1088/0953-8984/18/42/016
12.
12.C. Kerpal, D. J. Harding, A. C. Hermes, G. Meijer, S. R. Mackenzie, and A. Fielicke, J. Phys. Chem. A 117, 1233 (2013).
http://dx.doi.org/10.1021/jp3055137
13.
13.K. R. Asmis, Phys. Chem. Chem. Phys. 14, 9270 (2012).
http://dx.doi.org/10.1039/c2cp40762k
14.
14.Y. Gong, M. Zhou, and L. Andrews, Chem. Rev. 109, 6765 (2009).
http://dx.doi.org/10.1021/cr900185x
15.
15.K. S. Williams, J. P. Hooper, J. M. Horn, J. M. Lightstone, H. Wang, Y. J. Ko, and K. H. Bowen, J. Chem. Phys. 136, 134315 (2012);
http://dx.doi.org/10.1063/1.3698279
15.R.-Z. Li, J. Liang, X.-L. Xu, H.-G. Xu, and W.-J. Zheng, Chem. Phys. Lett. 575, 12 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.04.066
16.
16.A. Kirilyuk, K. Demyk, G. von Helden, G. Meijer, A. I. Poteryaev, and A. I. Lichtenstein, J. Appl. Phys. 93, 7379 (2003).
http://dx.doi.org/10.1063/1.1558252
17.
17.K. S. Molek, C. Anfuso-Cleary, and M. A. Duncan, J. Phys. Chem. A 112, 9238 (2008).
http://dx.doi.org/10.1021/jp8009436
18.
18.C. J. Dibble, S. T. Akin, S. Ard, C. P. Fowler, and M. A. Duncan, J. Phys. Chem. A 116, 5398 (2012);
http://dx.doi.org/10.1021/jp302560p
18.C. N. van Dijk, D. R. Roy, A. Fielicke, T. Rasing, A. C. Reber, S. N. Khanna, and A. Kirilyuk, Euro. Phys. J. D 68, 357 (2014).
http://dx.doi.org/10.1140/epjd/e2014-50503-x
19.
19.K. Ohshimo, S. Azuma, T. Komukai, R. Moriyama, and F. Misaizu, J. Phys. Chem. C 119, 11014 (2015);
http://dx.doi.org/10.1021/jp5115674
19.G. E. Johnson, N. M. Reilly, and A. W. Castleman, Jr., Int. J. Mass Spectrom. 280, 93 (2009).
http://dx.doi.org/10.1016/j.ijms.2008.07.030
20.
20.S. Karthikeyan, E. Deepika, and P. Murugan, J. Phys. Chem. C 116, 5981 (2012);
http://dx.doi.org/10.1021/jp2042729
20.S. K. Nayak and P. Jena, Phys. Rev. Lett. 81, 2970 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2970
21.
21.M. J. Han, T. Ozaki, and J. Yu, J. Chem. Phys. 123, 034306 (2005);
http://dx.doi.org/10.1063/1.1953387
21.P. J. Ziemann and A. W. Castleman, Jr., Phys. Rev. B 46, 13480 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.13480
22.
22.K. Ota, K. Koyasu, K. Ohshimo, and F. Misaizu, Chem. Phys. Lett. 588, 63 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.10.030
23.
23.K. Koyasu, K. Komasu, and F. Misaizu, J. Chem. Phys. 139, 164308 (2013);
http://dx.doi.org/10.1063/1.4826465
23.A. C. Reber, S. N. Khanna, J. S. Hunjan, and M. R. Beltrán, Chem. Phys. Lett. 428, 376 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.07.045
24.
24.B. W. Beck, Q. Xie, and T. Ichiye, Biophysical Journal 81, 601 (2001);
http://dx.doi.org/10.1016/S0006-3495(01)75726-8
24.R. H. Holm, S. Ciurli, and J. A. Weigel, Prog. Inorg. Chem. 38, 1 (1990);
http://dx.doi.org/10.1002/9780470166390.ch1
24.D. Sellmann, Angew. Chem., Int. Ed. Engl. 32, 64 (1993).
http://dx.doi.org/10.1002/anie.199300641
25.
25.K. Chen, J. Hirst, R. Camba, C. A. Bonagura, C. D. Stout, B. K. Burgess, and F. A. Armstrong, Nature 405, 814 (2000);
http://dx.doi.org/10.1038/35015610
25.W. F. Ruettinger, D. M. Ho, and G. C. Dismukes, Inorg. Chem. 38, 1036 (1999).
http://dx.doi.org/10.1021/ic981145y
26.
26.R. G. Raptis, I. P. Georgakaki, and D. C. R. Hockless, Angew. Chem., Int. Ed. 38, 1634 (1999);
http://dx.doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1632::AID-ANIE1632>3.0.CO;2-O
26.K. Dimitrou, A. D. Brown, K. Folting, and G. Christou, Inorg. Chem. 38, 1834 (1999).
http://dx.doi.org/10.1021/ic981237n
27.
27.S. M. J. Aubin, N. R. Dilley, I. Pardi, J. Krzystek, M. W. Wemple, L.-C. Brunel, M. B. Maple, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc. 120, 4991 (1998);
http://dx.doi.org/10.1021/ja974241r
27.G. Aromi, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-L. Tsai, S. Wang, and M. W. Wemple, Polyhedron 17, 3005 (1998).
http://dx.doi.org/10.1016/S0277-5387(98)00104-1
28.
28.S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc. 120, 2365 (1998);
http://dx.doi.org/10.1021/ja9732439
28.M. A. Halcrow, J.-S. Sun, J. C. Huffman, and G. Christou, Inorg. Chem. 34, 4167 (1995).
http://dx.doi.org/10.1021/ic00120a022
29.
29.S.-W. Lai, K.-K. Cheung, M. C.-W. Chan, and C.-M. Che, Angew. Chem., Int. Ed. 37, 182 (1998);
http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<182::AID-ANIE182>3.0.CO;2-X
29.Y. Ma, H.-Y. Chao, Y. Wu, S. T. Lee, W.-Y. Yu, and C.-M. Che, Chem. Commun. 2491 (1998).
30.
30.K. Isobe and A. Yagaski, Acc. Chem. Res. 26, 524 (1993).
http://dx.doi.org/10.1021/ar00034a002
31.
31.T. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, and J. F. Weiher, Proc. Natl. Acad. Sci. USA 69, 2437 (1972).
http://dx.doi.org/10.1073/pnas.69.9.2437
32.
32.B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Am. Chem. Soc. 95, 3523 (1973);
http://dx.doi.org/10.1021/ja00792a013
32.B. V. DePamphillis, B. A. Averill, T. Herskovitz, L. Que, Jr., and R. H. Holm, J. Am. Chem. Soc. 96, 4159 (1974).
http://dx.doi.org/10.1021/ja00820a017
33.
33.K. N. Ferreira, T. M. Iversion, K. Maghlaoui, J. Barber, and S. Iwata, Science 303, 1831 (2004).
http://dx.doi.org/10.1126/science.1093087
34.
34.S. M. Lang, I. Fleischer, T. M. Bernhardt, R. N. Barnett, and U. Landman, Nano Lett. 13, 5549 (2013).
http://dx.doi.org/10.1021/nl4031456
35.
35.N. S. McCool, D. M. Robinson, J. E. Sheats, and G. C. Dismukes, J. Am. Chem. Soc. 133, 11446 (2011);
http://dx.doi.org/10.1021/ja203877y
35.X. Liu and F. Wang, Coord. Chem. Rev. 256, 1115 (2012).
http://dx.doi.org/10.1016/j.ccr.2012.01.015
36.
36.S. Luo, C. J. Dibble, M. A. Duncan, and D. G. Truhlar, J. Phys. Chem. Lett. 5, 2528 (2014).
http://dx.doi.org/10.1021/jz501167s
37.
37.J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C. Huffman, A. L. Maniero, L.-C. Brunel, K. Awaga, H. Ishimoto, G. Christou, and D. N. Hendrickson, Inorg. Chem. 39, 3615 (2000).
http://dx.doi.org/10.1021/ic000237w
38.
38.H. Miyasaka, K. Nakata, L. Leeren, C. Coulon, Y. Nakazawa, T. Fujisaki, K.-i. Sugiura, M. Yamashita, and R. Clérac, J. Am. Chem. Soc. 128, 3770 (2006).
http://dx.doi.org/10.1021/ja0574062
39.
39.C. J. Milios, A. Prescimone, A. Mishra, S. Parsons, W. Wernsdorfer, G. Christou, S. P. Perlepes, and E. K. Brechin, Chem. Commun. 153 (2007).
40.
40.C. C. Beedle, C. J. Stephenson, K. J. Heroux, W. Wernsdorfer, and D. N. Hendrickson, Inorg. Chem. 47, 10798 (2008).
http://dx.doi.org/10.1021/ic801485k
41.
41.G. Karotsis, S. J. Teat, W. Wernsdorfer, S. Piligkos, S. J. Dalgarno, and E. K. Brechin, Angew. Chem., Int. Ed. 48, 8285 (2009).
http://dx.doi.org/10.1002/anie.200904094
42.
42.A. Kubacka, M. Fernandez-Garcia, and G. Colon, Chem. Rev. 112, 1555 (2012).
http://dx.doi.org/10.1021/cr100454n
43.
43.I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).
http://dx.doi.org/10.1039/C1EE02717D
44.
44.L. Y. L. Shen, G. A. Pasteur, and D. E. Aspnes, Phys. Rev. B 16, 3742 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.3742
45.
45.A. Kov´acs, R. J. M. Konings, J. K. Gibson, I. Infante, and L. Gagliar di, Chem. Rev. 115, 1725 (2015);
http://dx.doi.org/10.1021/cr500426s
45.K. Pradhan, G. L. Gutsev, C. A. Weatherford, and P. Jena, J. Chem. Phys. 134, 144305 (2011).
http://dx.doi.org/10.1063/1.3570578
46.
46.Vienna ab initio simulation package (VASP), Technische Universität Wien, (1999);
46.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993);
http://dx.doi.org/10.1103/PhysRevB.47.558
46.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
47.
47.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
48.
48.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
49.
49.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
50.
50.S. Grimme, J. Comp. Chem. 43, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
51.
51.R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
http://dx.doi.org/10.1063/1.1740588
52.
52.S. Ganguly, M. Kabir, C. Autieri, and B. Sanyal, J. Phys. : Condens. Matter 27, 056002 (2015).
http://dx.doi.org/10.1088/0953-8984/27/5/056002
53.
53.N. O. Jones, B. V. Reddy, F. Rasouli, and S. N. Khanna, Phys. Rev. B 72, 165411 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165411
54.
54.R. H. Aguilera-del-Toro, F. Aguilera-Granja, A. Vega, and L. C. Balbás, Phys. Chem. Chem. Phys. 16, 21732 (2014).
http://dx.doi.org/10.1039/C4CP03370A
55.
55.M. Kabir, A. Mookerjee, and D. G. Kanhere, Phys. Rev. B 73, 224439 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224439
56.
56.O. Diéguez, M. M. G. Alemany, C. Rey, P. Ordejón, and L. J. Gallego, Phys. Rev. B 63, 205407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205407
57.
57.S. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta, and A. Mookerjee, Phys. Rev. B 76, 014429 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014429
58.
58.A. S. Chaves, G. G. Rondina, M. J. Piotrowski, P. Tereshchuk, and J. L. F. Da Silva, J. Phys. Chem. A 118, 10813 (2014);
http://dx.doi.org/10.1021/jp508220h
58.S. Datta, R. Banerjee, and A. Mookerjee, 142 024309 (2015).
59.
59.S. Datta, M. Kabir, T. Saha-Dasgupta, and A. Mookerjee, Phys. Rev. B 80, 085418 (2009);
http://dx.doi.org/10.1103/PhysRevB.80.085418
59.R. Banerjee, S. Datta, and A. Mookerjee, Physica B : Con. Mat. 419, 86 (2013).
http://dx.doi.org/10.1016/j.physb.2013.03.027
60.
60.A. J. Merer, Annu. Rev. Phys. Chem. 40, 407 (1989).
http://dx.doi.org/10.1146/annurev.pc.40.100189.002203
61.
61.Hannu Häkkinen, Michael Moseler, and Uzi Landman, Phys. Rev. Lett. 89, 033401 (2002);
http://dx.doi.org/10.1103/PhysRevLett.89.033401
61.Hannu Häkkinen, Bokwon Yoon, and Uzi Landman, J. Phys. Chem. 107, 6168 (2003).
http://dx.doi.org/10.1021/jp035437i
62.
62.S. Datta and T. Saha-Dasgupta, J. Phys. : Condens. Matter 25, 225302 (2013);
http://dx.doi.org/10.1088/0953-8984/25/22/225302
62.S. Datta and T. Saha-Dasgupta, J. Phys. : Condens. Matter 26, 185004 (2014).
http://dx.doi.org/10.1088/0953-8984/26/18/185004
63.
63.C. M. Chang and M. Y. Chou, Phys. Rev. Lett. 93, 133401 (2004);
http://dx.doi.org/10.1103/PhysRevLett.93.133401
63.S. Datta, M. Kabir, and T. Saha-Dasgupta, Phys. Rev. B 84, 075429 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075429
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936561
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936561
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936561
2015-11-20
2016-09-29

Abstract

Spin-polarized DFT has been used to perform a comparative study of the geometricstructures and electronic properties for isolated MX nano clusters between their two stable isomers - a planar rhombus-like 2D structure and a cubane-like 3D structure with M = Mn, Fe, Co, Ni, Cu ; X = O, S. These two structural patterns of the MX clusters are commonly found as building blocks in several poly-nuclear transition metal complexes in inorganic chemistry. The effects of the van der Waals corrections to the physical properties have been considered in the electronic structure calculations employing the empirical Grimme’s correction (DFT+D2). We report here an interesting trend in their relative structuralstability - the isolated MO clusters prefer to stabilize more in the planar structure, while the cubane-like 3D structure is more favorable for most of the isolated MS clusters than their planar 2D counterparts. Our study reveals that this contrasting trend in the relative structuralstability is expected to be driven by an interesting interplay between the - and - hybridization effects of the constituents’ valence electrons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936561.html;jsessionid=YWSx7KwNqQCQPd-hSsKdY--2.x-aip-live-02?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936561&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936561&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936561'
Right1,Right2,Right3,