Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. H. Davies, The Physics of Low-dimensional Semiconductors, An Introduction (Cambridge University Press, Cambridge, 1997).
2.P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (John Wiley & Sons Ltd, Chichester, England, 2009).
3.Z. F. Ezawa, Quantum Hall Effects: Recent Theoretical and Experimental Developments (World Scientific, Singapore, 2013).
4.J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, U.K., 2013).
5.H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunneling Diodes (Cambridge University Press, Cambridge, U.K., 2006).
6.R. Ferreira and G. Bastard, Rep. Prog. Phys. 60, 345 (1997).
7.P. Bhattacharya, Properties of III-V quantum wells and superlattices (INSPEC, IEE, London, U.K., 1996), p. 187.
8.A. Palevski, F. Beltram, F. Capasso, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 1929 (1990).
9.Y. Berk, A. Kamenev, A. Palevski, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 50, 15420 (1994).
10.A. Kurobe, I. M. Castleton, E. H. Linfield, M. P. Grimshaw, K. M. Brown, D. A. Ritchie, M. Pepper, and G. A. C. Jones, Phys. Rev. B 50, 8024 (1994).
11.Y. H. Shin, Y. H. Park, Y. Kim, and Y. Shon, J. Lumin. 130, 2437 (2010).
12.A. H. Cabrera and P. Aceituno, Phys. Rev. B 60, 5698 (1999).
13.I. Filikhin, S. Matinyan, J. Nimmo, and B. Vlahovic, Physica E 43, 1669 (2011).
14.S. Ristic and N. A. F Jaeger, IEEE Electron Device Lett. 28, 30 (2007).
15.A. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 4, 1 (2014).
16.F. M. S. Lima, A. L. A. Fonseca, O. A. C. Nunes, and Q. Fanyao, J. Appl. Phys. 92, 5296 (2002).
17.T. Sahu and K. A. Shore, J. Appl. Phys. 107, 113708 (2010).
18.E. P. Pokatilov, D. L. Nika, and A. A. Balandin, Appl. Phys. Lett. 89, 113508 (2006).
19.N. Sahoo and T. Sahu, J. Appl. Phys. 116, 043703 (2014).
20.K. Inoue and T. Matsuno, Phys. Rev. B 47, 3771 (1993).
21.G. Q. Hai, N. Studart, F. M. Peeters, P. M. Koenraad, and J. H. Wolter, J. Appl. Phys. 80, 5809 (1996).
22.P. K. Subudhi, S. Palo, and T. Sahu, Superlattices Microstruct. 51, 430 (2012).
23.S. Das, R. K. Nayak, T. Sahu, and A. K. Panda, Superlattices Microstruct. 66, 39 (2014).
24.E. P. Pokatilov, D. L. Nika, A. S. Askerov, and A. A. Balandin, J. Appl. Phys. 102, 054304 (2007).
25.T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
26.S. Adachi, J. Appl. Phys. 58, R1 (1985).
27.A. K. Saxena and A. D. Adams, J. Appl. Phys. 58, 2640 (1985).

Data & Media loading...


Article metrics loading...



We show that sharp nonmonotic variation of low temperature electron mobility can be achieved in / barrier delta-doped double quantum wellstructure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughnessscattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd