Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. X. Liu and J. W. Choi, in Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2009 (2009), pp. 6391-6394.
2.I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, Smart Materials and Structures 15(3), 737-748 (2006).
3.T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat Nano 6(5), 296-301 (2011).
4.F. Lorussi, E. P. Scilingo, M. Tesconi, A. Tognetti, and D. De Rossi, IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society 9(3), 372-381 (2005).
5.T. Giorgino, P. Tormene, F. Lorussi, D. De Rossi, and S. Quaglini, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 17(4), 409-415 (2009).
6.X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R. S. Ruoff, and H. Zhu, Scientific reports 2, 870 (2012).
7.M. Hempel, D. Nezich, J. Kong, and M. Hofmann, Nano letters 12(11), 5714-5718 (2012).
8.F. Xu and Y. Zhu, Advanced materials 24(37), 5117-5122 (2012).
9.X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, Advanced materials 23(45), 5440-5444 (2011).
10.C. Cochrane, V. Koncar, M. Lewandowski, and C. Dufour, Sensors 7(4), 473-492 (2007).
11.D. Lee, H. P. Hong, M. J. Lee, C. W. Park, and N. K. Min, Sensors and Actuators A: Physical 180, 120-126 (2012).
12.M. H. Al-Saleh, G. A. Gelves, and U. Sundararaj, Composites Part A: Applied Science and Manufacturing 42(1), 92-97 (2011).
13.E. Thommerel, J. C. Valmalette, J. Musso, S. Villain, J. R. Gavarri, and D. Spada, Materials Science and Engineering: A 328(1–2), 67-79 (2002).
14.C. Li and T.-W. Chou, Composites Science and Technology 68(15-16), 3373-3379 (2008).
15.Y. Miao, Q. Yang, L. Chen, R. Sammynaiken, and W. J. Zhang, Applied Physics Letters 101(6), 063120 (2012).
16.N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, Carbon 48(3), 680-687 (2010).
17.D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Nature nanotechnology 6(12), 788-792 (2011).
18.S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, and Q. Pei, Advanced materials 24(10), 1321-1327 (2012).
19.P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, Advanced materials 24(25), 3326-3332 (2012).
20.S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M. Y. Yang, and S. H. Ko, Advanced materials 26(33), 5808-5814 (2014).
21.P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, and S. H. Ko, Advanced Functional Materials 24(36), 5671-5678 (2014).
22.M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, ACS Nano 8(5), 5154-5163 (2014).
23.C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, Advanced materials 23(27), 3052-3056 (2011).
24.H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J. H. Jeong, E. Lee, J. Y. Lee, and I. Park, Small 10(20), 4171-4181 (2014).
25.C. K. Jeong, J. Lee, S. Han, J. Ryu, G. T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, and K. J. Lee, Advanced materials 27(18), 2866-2875 (2015).
26.K. K. Kim, S. Hong, H. M. Cho, J. Lee, Y. D. Suh, J. Ham, and S. H. Ko, Nano letters 15(8), 5240-5247 (2015).
27.S. Yao and Y. Zhu, Nanoscale 6(4), 2345-2352 (2014).
28.I. Chang, T. Park, J. Lee, H. B. Lee, S. Ji, M. H. Lee, S. H. Ko, and S. W. Cha, International Journal of Hydrogen Energy 39(14), 7422-7427 (2014).
29.I. Chang, T. Park, J. Lee, M. H. Lee, S. H. Ko, and S. W. Cha, Journal of Materials Chemistry A 1(30), 8541-8546 (2013).
30.T. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, and K. S. Suh, Advanced Functional Materials 23(10), 1250-1255 (2013).
31.D. Kim, L. Zhu, D.-J. Jeong, K. Chun, Y.-Y. Bang, S.-R. Kim, J.-H. Kim, and S.-K. Oh, Carbon 63, 530-536 (2013).
32.S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. D. Suh, H. Cho, J. Shin, J. Yeo, and S. H. Ko, Advanced materials 27(32), 4744-4751 (2015).
33.X. Li, H. Gao, C. J. Murphy, and K. K. Caswell, Nano letters 3(11), 1495-1498 (2003).
34.C.-L. Wu, H.-C. Lin, J.-S. Hsu, M.-C. Yip, and W. Fang, Thin Solid Films 517(17), 4895-4901 (2009).
35.N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Acta Materialia 56(13), 2929-2936 (2008).
36.Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B. J. Wiley, and Z. L. Wang, Physical Review B 85(4), 045443 (2012).
37.J. G. Simmons, Journal of Applied Physics 34(6), 1793-1803 (1963).
38.M. Taya, W. J. Kim, and K. Ono, Mechanics of Materials 28(1-4), 53-59 (1998).
39.A. L. R. Bug, S. A. Safran, and I. Webman, Physical Review Letters 54(13), 1412-1415 (1985).
40.A. L. R. Bug, S. A. Safran, and I. Webman, Physical Review B 33(7), 4716-4724 (1986).
41.I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Physical Review B 30(7), 3933-3943 (1984).
42.I. Balberg, N. Binenbaum, and N. Wagner, Physical Review Letters 52(17), 1465-1468 (1984).
43.S. I. White, R. M. Mutiso, P. M. Vora, D. Jahnke, S. Hsu, J. M. Kikkawa, J. Li, J. E. Fischer, and K. I. Winey, Advanced Functional Materials 20(16), 2709-2716 (2010).
44.S. Vionnet-Menot, C. Grimaldi, T. Maeder, S. Strässler, and P. Ryser, Physical Review B 71(6), (2005).
45.C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale 5(10), 4454-4461 (2013).
46.S. Bin and J. Qu, presented at theAdvanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on, 2005 (unpublished).

Data & Media loading...


Article metrics loading...



Possessing a strong piezoresistivity,nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowirepercolationnetwork as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolationnetwork, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive) can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistivesensors for flexible and wearable devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd