Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936635
1.
1.C. X. Liu and J. W. Choi, in Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2009 (2009), pp. 6391-6394.
2.
2.I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, Smart Materials and Structures 15(3), 737-748 (2006).
http://dx.doi.org/10.1088/0964-1726/15/3/009
3.
3.T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat Nano 6(5), 296-301 (2011).
http://dx.doi.org/10.1038/nnano.2011.36
4.
4.F. Lorussi, E. P. Scilingo, M. Tesconi, A. Tognetti, and D. De Rossi, IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society 9(3), 372-381 (2005).
http://dx.doi.org/10.1109/TITB.2005.854510
5.
5.T. Giorgino, P. Tormene, F. Lorussi, D. De Rossi, and S. Quaglini, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 17(4), 409-415 (2009).
http://dx.doi.org/10.1109/TNSRE.2009.2019584
6.
6.X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R. S. Ruoff, and H. Zhu, Scientific reports 2, 870 (2012).
7.
7.M. Hempel, D. Nezich, J. Kong, and M. Hofmann, Nano letters 12(11), 5714-5718 (2012).
http://dx.doi.org/10.1021/nl302959a
8.
8.F. Xu and Y. Zhu, Advanced materials 24(37), 5117-5122 (2012).
http://dx.doi.org/10.1002/adma.201201886
9.
9.X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, Advanced materials 23(45), 5440-5444 (2011).
http://dx.doi.org/10.1002/adma.201103406
10.
10.C. Cochrane, V. Koncar, M. Lewandowski, and C. Dufour, Sensors 7(4), 473-492 (2007).
http://dx.doi.org/10.3390/s7040473
11.
11.D. Lee, H. P. Hong, M. J. Lee, C. W. Park, and N. K. Min, Sensors and Actuators A: Physical 180, 120-126 (2012).
http://dx.doi.org/10.1016/j.sna.2012.04.015
12.
12.M. H. Al-Saleh, G. A. Gelves, and U. Sundararaj, Composites Part A: Applied Science and Manufacturing 42(1), 92-97 (2011).
http://dx.doi.org/10.1016/j.compositesa.2010.10.003
13.
13.E. Thommerel, J. C. Valmalette, J. Musso, S. Villain, J. R. Gavarri, and D. Spada, Materials Science and Engineering: A 328(1–2), 67-79 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01680-X
14.
14.C. Li and T.-W. Chou, Composites Science and Technology 68(15-16), 3373-3379 (2008).
http://dx.doi.org/10.1016/j.compscitech.2008.09.025
15.
15.Y. Miao, Q. Yang, L. Chen, R. Sammynaiken, and W. J. Zhang, Applied Physics Letters 101(6), 063120 (2012).
http://dx.doi.org/10.1063/1.4742893
16.
16.N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, Carbon 48(3), 680-687 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.10.012
17.
17.D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Nature nanotechnology 6(12), 788-792 (2011).
http://dx.doi.org/10.1038/nnano.2011.184
18.
18.S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, and Q. Pei, Advanced materials 24(10), 1321-1327 (2012).
http://dx.doi.org/10.1002/adma.201104101
19.
19.P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, Advanced materials 24(25), 3326-3332 (2012).
http://dx.doi.org/10.1002/adma.201200359
20.
20.S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M. Y. Yang, and S. H. Ko, Advanced materials 26(33), 5808-5814 (2014).
http://dx.doi.org/10.1002/adma.201400474
21.
21.P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, and S. H. Ko, Advanced Functional Materials 24(36), 5671-5678 (2014).
http://dx.doi.org/10.1002/adfm.201400972
22.
22.M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, ACS Nano 8(5), 5154-5163 (2014).
http://dx.doi.org/10.1021/nn501204t
23.
23.C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, Advanced materials 23(27), 3052-3056 (2011).
http://dx.doi.org/10.1002/adma.201100530
24.
24.H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J. H. Jeong, E. Lee, J. Y. Lee, and I. Park, Small 10(20), 4171-4181 (2014).
25.
25.C. K. Jeong, J. Lee, S. Han, J. Ryu, G. T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, and K. J. Lee, Advanced materials 27(18), 2866-2875 (2015).
http://dx.doi.org/10.1002/adma.201500367
26.
26.K. K. Kim, S. Hong, H. M. Cho, J. Lee, Y. D. Suh, J. Ham, and S. H. Ko, Nano letters 15(8), 5240-5247 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01505
27.
27.S. Yao and Y. Zhu, Nanoscale 6(4), 2345-2352 (2014).
http://dx.doi.org/10.1039/c3nr05496a
28.
28.I. Chang, T. Park, J. Lee, H. B. Lee, S. Ji, M. H. Lee, S. H. Ko, and S. W. Cha, International Journal of Hydrogen Energy 39(14), 7422-7427 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.03.017
29.
29.I. Chang, T. Park, J. Lee, M. H. Lee, S. H. Ko, and S. W. Cha, Journal of Materials Chemistry A 1(30), 8541-8546 (2013).
http://dx.doi.org/10.1039/c3ta11699a
30.
30.T. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, and K. S. Suh, Advanced Functional Materials 23(10), 1250-1255 (2013).
http://dx.doi.org/10.1002/adfm.201202013
31.
31.D. Kim, L. Zhu, D.-J. Jeong, K. Chun, Y.-Y. Bang, S.-R. Kim, J.-H. Kim, and S.-K. Oh, Carbon 63, 530-536 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.07.030
32.
32.S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. D. Suh, H. Cho, J. Shin, J. Yeo, and S. H. Ko, Advanced materials 27(32), 4744-4751 (2015).
http://dx.doi.org/10.1002/adma.201500917
33.
33.X. Li, H. Gao, C. J. Murphy, and K. K. Caswell, Nano letters 3(11), 1495-1498 (2003).
http://dx.doi.org/10.1021/nl034525b
34.
34.C.-L. Wu, H.-C. Lin, J.-S. Hsu, M.-C. Yip, and W. Fang, Thin Solid Films 517(17), 4895-4901 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.146
35.
35.N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Acta Materialia 56(13), 2929-2936 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.02.030
36.
36.Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B. J. Wiley, and Z. L. Wang, Physical Review B 85(4), 045443 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045443
37.
37.J. G. Simmons, Journal of Applied Physics 34(6), 1793-1803 (1963).
http://dx.doi.org/10.1063/1.1702682
38.
38.M. Taya, W. J. Kim, and K. Ono, Mechanics of Materials 28(1-4), 53-59 (1998).
http://dx.doi.org/10.1016/S0167-6636(97)00064-1
39.
39.A. L. R. Bug, S. A. Safran, and I. Webman, Physical Review Letters 54(13), 1412-1415 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1412
40.
40.A. L. R. Bug, S. A. Safran, and I. Webman, Physical Review B 33(7), 4716-4724 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.4716
41.
41.I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Physical Review B 30(7), 3933-3943 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.3933
42.
42.I. Balberg, N. Binenbaum, and N. Wagner, Physical Review Letters 52(17), 1465-1468 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1465
43.
43.S. I. White, R. M. Mutiso, P. M. Vora, D. Jahnke, S. Hsu, J. M. Kikkawa, J. Li, J. E. Fischer, and K. I. Winey, Advanced Functional Materials 20(16), 2709-2716 (2010).
http://dx.doi.org/10.1002/adfm.201000451
44.
44.S. Vionnet-Menot, C. Grimaldi, T. Maeder, S. Strässler, and P. Ryser, Physical Review B 71(6), (2005).
http://dx.doi.org/10.1103/PhysRevB.71.064201
45.
45.C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale 5(10), 4454-4461 (2013).
http://dx.doi.org/10.1039/c3nr00462g
46.
46.S. Bin and J. Qu, presented at theAdvanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on, 2005 (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936635
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936635
2015-11-23
2016-09-27

Abstract

Possessing a strong piezoresistivity,nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowirepercolationnetwork as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolationnetwork, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive) can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistivesensors for flexible and wearable devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936635.html;jsessionid=J7cv41yje4NAXwxh39e6J9s0.x-aip-live-06?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936635&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936635'
Right1,Right2,Right3,