Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. T. Tritt and M. A. Subramanian, “Thermoelectric Materials, Phenomena, and Applications: A bird’s Eye View,” MRS Bulletin 31, 188 (2006).
2.J. He, M. G. Kanatzidis, and V. P. Dravid, “High performance bulk thermoelectrics via a panoscopic approach,” Materials Today 16, 166 (2013).
3.G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105 (2008).
4.X. Chen, D. Parker, and D. J. Singh, “Importance of non-parabolic band effects in the thermoelectric properties of semiconductors,” Sci. Rep. 3, 3168 (2013).
5.K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, “High-performance bulk thermoelectrics with all-scale hierarchical architectures,” Nature 489, 414 (2012).
6.S. H. Lo, J. He, K. Biswas, M. G. Kanatzidis, and V. P. Dravid, “Phonon Scattering and Thermal Conductivity in p-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials,” Adv. Funct. Mater. 22, 5175 (2012).
7.K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M.G Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,” Science 303, 818 (2004).
8.T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum dot superlattice thermoelectric materials and devices,” Science 297, 2229 (2002).
9.J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science 321, 554 (2008).
10.K. Kurosaki, A. Kusuga, H. Muta, M. Uno, and S. Yamanaka, “Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity,” Appl. Phys. Lett. 87, 061919 (2005).
11.L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47, 1272712731 (1993).
12.L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, C. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508, 373 (2014).
13.G. Shi and E. Kioupakis, “Quasiparticle band structures and thermoelectric transport properties of p-type SnSe,” J. Appl. Phys. 117, 065103 (2015).
14.K. Kutorasinski, B. Wiendlocha, S. Kaprzyk, and J. Tobola, “Electronic structure and thermoelectric properties of n- and p-type SnSe from first principles calculations,” Phys. Rev. B 91, 205201 (2015).
15.G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558 (1993).
16.P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).
17.J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Sigh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B 46, 6671 (1992).
18.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865 (1996).
19.G. K. H. Madsen and D. J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Comput. Phys. Commun. 175, 67 (2006).
20.G. D. Mahan and J. O. Sofo, “The best thermoelectric,” Proc. Natl. Acad. Sci. 93, 7436 (1996).
21.H. Wiedemeier and H. V. Schnering, “Refinement of the structures of GeSe,GeS,SnS and SnSe,” Z. Kristallogr. 148, 295 (1978).
22.H. Şafak, H. Merdan, and Ö.F. Yüksel, “Dispersion analysis of SnS and SnSe,” Turk. J. Phys. 26, 341 (2002).

Data & Media loading...


Article metrics loading...



Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE) with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along and direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd