Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936652
1.
1.G. Ma and H. Rauh, Superconductor Science and Technology 26(10), 105001 (2013).
http://dx.doi.org/10.1088/0953-2048/26/10/105001
2.
2.F. Grilli, E. Pardo, A. Stenvall, D. N. Nguyen, Y. Weijia, and F. Gomory, Applied Superconductivity, IEEE Transactions on 24(1), 78-110 (2014).
http://dx.doi.org/10.1109/TASC.2013.2259827
3.
3.G. P. Mikitik, Y. Mawatari, A. T. Wan, and F. Sirois, Applied Superconductivity, IEEE Transactions on 23(2), 8001920-8001920 (2013).
http://dx.doi.org/10.1109/TASC.2013.2245504
4.
4.W. Norris, Journal of Physics D: Applied Physics 3(4), 489 (1970).
http://dx.doi.org/10.1088/0022-3727/3/4/308
5.
5.E. Brandt, M. Indenbom, and A. Forkl, EPL (Europhysics Letters) 22(9), 735 (1993).
http://dx.doi.org/10.1209/0295-5075/22/9/017
6.
6.E. H. Brandt and M. Indenbom, Physical Review B 48(17), 12893-12906 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.12893
7.
7.E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, Physical Review B 49(14), 9802-9822 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.9802
8.
8.Y. Mawatari and K. Kajikawa, Applied Physics Letters 90(2), 022506 (2007).
http://dx.doi.org/10.1063/1.2431013
9.
9.N. Schönborg, Journal of Applied Physics 90(6), 2930-2933 (2001).
http://dx.doi.org/10.1063/1.1391216
10.
10.W. Yuan, A. M. Campbell, and T. A. Coombs, Journal of Applied Physics 107(9), 093909 (2010).
http://dx.doi.org/10.1063/1.3371190
11.
11.J. R. Clem, J. H. Claassen, and Y. Mawatari, Superconductor Science and Technology 20(12), 1130 (2007).
http://dx.doi.org/10.1088/0953-2048/20/12/008
12.
12.V. M. Zermeno, A. B. Abrahamsen, N. Mijatovic, B. B. Jensen, and M. P. Sørensen, Journal of Applied Physics 114(17), 173901 (2013).
http://dx.doi.org/10.1063/1.4827375
13.
13.C. Gu, T. Qu, X. Li, and Z. Han, Applied Superconductivity, IEEE Transactions on 24(1), 117-124 (2014).
14.
14.E. Pardo, A. Sanchez, and C. Navau, Phys. Rev. B 67(10), 104517 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.104517
15.
15.E. Pardo, A. Sanchez, D.-X. Chen, and C. Navau, Phys. Rev. B 71(13), 134517 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.134517
16.
16.Y. Mawatari, Physical Review B 54(18), 13215-13221 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.13215
17.
17.K. P. Thakur, A. Raj, E. H. Brandt, and P. V. P. S. S. Sastry, Superconductor Science & Technology 24(4), (2011).
http://dx.doi.org/10.1088/0953-2048/24/9/099501
18.
18.K. P. Thakur, A. Raj, E. H. Brandt, J. Kvitkovic, and S. V. Pamidi, Superconductor Science & Technology 24(6), (2011).
http://dx.doi.org/10.1088/0953-2048/24/9/099501
19.
19.M. Sander, F. Grilli, and Iop, in 9th European Conference on Applied Superconductivity (Eucas 09) (2010), Vol.234.
20.
20.Y. Zhao, C. H. Cheng, and C. C. Sorrell, Physica C: Superconductivity 357–360, Part 1(0), 614-616 (2001).
http://dx.doi.org/10.1016/S0921-4534(01)00330-6
21.
21.C. Huang and Y. Zhou, Physica C: Superconductivity 490, 5-9 (2013).
http://dx.doi.org/10.1016/j.physc.2013.04.007
22.
22.J. Xia, H. Yong, and Y. Zhou, Journal of Applied Physics 114(9), 093905 (2013).
http://dx.doi.org/10.1063/1.4819756
23.
23.J. Xia and Y. Zhou, Cryogenics 69, 1-9 (2015).
http://dx.doi.org/10.1016/j.cryogenics.2015.02.003
24.
24.J. Claassen and C. Thieme, Superconductor Science and Technology 21(10), 105003 (2008).
http://dx.doi.org/10.1088/0953-2048/21/10/105003
25.
25.G.-T. Ma, Superconductor Science & Technology 27(6) (2014).
26.
26.M. Zhang, J. Kvitkovic, J.-H. Kim, C. H. Kim, S. V. Pamidi, and T. A. Coombs, Applied Physics Letters 101(10), 102602 (2012).
http://dx.doi.org/10.1063/1.4749275
27.
27.D. Miyagi, Y. Yunoki, M. Umabuchi, N. Takahashi, and O. Tsukamoto, Physica C: Superconductivity 468(15–20), 1743-1746 (2008).
http://dx.doi.org/10.1016/j.physc.2008.05.196
28.
28.F. Gomory, M. Vojenciak, E. Pardo, M. Solovyov, and J. Souc, Superconductor Science & Technology 23(3) (2010).
http://dx.doi.org/10.1088/0953-2048/23/3/034012
29.
29.D. N. Nguyen, S. P. Ashworth, J. O. Willis, F. Sirois, and F. Grilli, Superconductor Science & Technology 23(2) (2010).
30.
30.D. Miyagi, Y. Amadutsumi, N. Takahashi, and O. Tsukamoto, Physica C: Superconductivity 463–465(0), 781-784 (2007).
http://dx.doi.org/10.1016/j.physc.2007.03.466
31.
31.D. Miyagi, M. Umabuchi, N. Takahashi, and O. Tsukamoto, Physica C: Superconductivity 463–465(0), 785-789 (2007).
http://dx.doi.org/10.1016/j.physc.2007.03.467
32.
32.Y. Mawatari, Phys. Rev. B 77(10), 104505 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104505
33.
33.Y. Mawatari, Phys. Rev. B 80(18), 184508 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.184508
34.
34.A. He, C. Xue, H. Yong, and Y. Zhou, Superconductor Science and Technology 27(2), 025004 (2014).
http://dx.doi.org/10.1088/0953-2048/27/2/025004
35.
35.A. Morandi, Superconductor Science & Technology 25(10) (2012).
http://dx.doi.org/10.1088/0953-2048/25/10/104003
36.
36.R. Brambilla, F. Grilli, and L. Martini, Superconductor Science & Technology 20(1), 16-24 (2007).
http://dx.doi.org/10.1088/0953-2048/20/1/004
37.
37.R. Pecher, M. D. McCulloch, S. Chapman, L. Prigozhin, and C. Elliott, presented at theProceedings of the 6th European Conference on Applied Superconductivity (EUCAS), 2003 (unpublished).
38.
38.M. Zhang, J.-H. Kim, S. Pamidi, M. Chudy, W. Yuan, and T. A. Coombs, Journal of Applied Physics 111(8), 083902 (2012).
http://dx.doi.org/10.1063/1.3698317
39.
39.M. Zhang, K. Matsuda, and T. A. Coombs, Journal of Applied Physics 112(4), 043912 (2012).
http://dx.doi.org/10.1063/1.4747925
40.
40.M. Zhang and T. A. Coombs, Superconductor Science & Technology 25(1) (2012).
41.
41.M. Zhang, J. Kvitkovic, S. V. Pamidi, and T. A. Coombs, Superconductor Science & Technology 25(12) (2012).
42.
42.Z. Hong, A. M. Campbell, and T. A. Coombs, Superconductor Science & Technology 19(12), 1246-1252 (2006).
http://dx.doi.org/10.1088/0953-2048/19/12/004
43.
43.Z. Hong, Q. Jiang, R. Pei, A. M. Campbell, and T. A. Coombs, Superconductor Science & Technology 20(4), 331-337 (2007).
http://dx.doi.org/10.1088/0953-2048/20/4/006
44.
44.Z. Hong, L. Ye, Y. Jiang, R. Pei, A. M. Campbell, and T. A. Coombs, in 8th European Conference on Applied Superconductivity (Eucas’07) (2008), Vol.97.
45.
45.M. D. Ainslie, T. J. Flack, and A. M. Campbell, Physica C: Superconductivity 472(1), 50-56 (2012).
http://dx.doi.org/10.1016/j.physc.2011.10.008
46.
46.Z. Hong and T. A. Coombs, Journal of Superconductivity and Novel Magnetism 23(8)), 1551-1562 (2010).
http://dx.doi.org/10.1007/s10948-010-0812-y
47.
47.V. Lahtinen and A. Stenvall, Journal of Superconductivity and Novel Magnetism 27(3), 641-650 (2014).
http://dx.doi.org/10.1007/s10948-013-2443-6
48.
48.P. Krueger, Optimisation of hysteretic losses in high-temperature superconducting wires (KIT Scientific Publishing, 2014).
49.
49.D. Miyagi, Y. Amadutsumi, N. Takahashi, and O. Tsukamoto, Applied Superconductivity, IEEE Transactions on 17(2), 3167-3170 (2007).
http://dx.doi.org/10.1109/TASC.2007.899088
51.
51.C. Bean, Physical Review Letters 8(6), 250 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.250
52.
52.H. Luo, S. Ding, X. Wu, Z. Wang, and H. Luo, Journal of superconductivity 14(5), 631-635 (2001).
http://dx.doi.org/10.1023/A:1012948317804
53.
53.S. Kim, K. Sim, J. Cho, H.-M. Jang, and M. Park, Applied Superconductivity, IEEE Transactions on 20(3), 2130-2133 (2010).
http://dx.doi.org/10.1109/TASC.2010.2041439
54.
54.M. D. Ainslie, V. M. Rodriguez-Zermeno, Z. Hong, W. Yuan, T. J. Flack, and T. A. Coombs, Superconductor Science and Technology 24(4), 045005 (2011).
http://dx.doi.org/10.1088/0953-2048/24/4/045005
55.
55.Y. Ichiki and H. Ohsaki, IEEE Trans. Appl. Supercond. 15(2) 2851-2854 (2005).
http://dx.doi.org/10.1109/TASC.2005.848246
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936652
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936652
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936652
2015-11-23
2016-12-04

Abstract

This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular ACmagnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936652.html;jsessionid=F6CKoOasI2raVCSC7RVjEd9x.x-aip-live-03?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936652&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936652&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936652'
Right1,Right2,Right3,