Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Valentin N. Popov, Mater. Sci. Eng. R 43(3), 61 (2004).
2.X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, EPL (Europhysics Letters) 28(5), 335 (1994).
3.J. Dong, H. Li, and L. Li, NPG Asia Materials 5, 56 (2013).
4.Y. Zhou and H. Li, RSC Advances 5, 66852 (2015).
5.G. Y. Guo and J. C. Lin, Phys. Rev. B 71(16), 165402 (2005).
6.M. Scardamaglia, C. Struzzi, F. J. A. Rebollo, P. De Marco, P. R. Mudimela, Jean-François Colomer, M. Amati, L. Gregoratti, L. Petaccia, and R. Snyders, Carbon 83, 118 (2015).
7.C. Tang, Y. Bando, Y. Huang, S. Yue, C. Gu, F. F. Xu, and D. Golberg, J. Am. Chem. Soc. 127(18), 6552 (2005).
8.S. Yang, G-L Zhao, and E. Khosravi, J. Phys. Chem. C 114(8), 3371 (2010).
9.Ld A. Silva, S. C. Guerini, and V. Lemos, Nanotechnol., IEEE Transactions on 5(5), 517 (2006).
10.S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham, and R. B. Weisman, Science 330(6011), 1656 (2010).
11.R. S. Singh, R. Y. Tay, W. L. Chow, S. H. Tsang, G. Mallick, and E. H. T. Teo, Appl. Phys. Lett. 104(16), 163101 (2014).
12.S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallographie 220, 567 (2005).
13.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
14.D. Vanderbilt, Phys. Rev. B 41(11), 7892 (1990).
15.G. Y. Guo, K. C. Chu, D-sheng. Wang, and C.-gang Duan, Phys. Rev. B 69(20), 205416 (2004).
16.J. Wu and W. Zhang, Solid State Commun. 149(11), 486 (2009).

Data & Media loading...


Article metrics loading...



Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes(CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiralCNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to have metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd