Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995).
2.B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
3.B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Phys. Rev. B 56, 15081 (1997).
4.W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, Nat. Commun. 6, 6197 (2015).
5.G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Horky, M. Zehetbauerd, and P. Rogl, Acta Mater. 91, 227 (2015).
6.J. Yu, W. Zhao, P. Wei, W. Zhu, H. Zhou, Z. Liu, D. Tang, B. Lei, and Q. Zhang, Appl. Phys. Lett. 104, 142104 (2014).
7.S. Ballikaya and C. Uher, J. Alloys Compd. 585, 168 (2014).
8.V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, Nature 395, 876 (1998).
9.G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).
10.J. Yang, L. Xi, W. Zhang, L. Chen, and J. Yang, J. Electron. Mater. 38, 1397 (2009).
11.X. Shi, S. Bai, L. Xi, J. Yang, W. Zhang, L. Chen, and J. Yang, J. Mater. Res. 26, 1745 (2011).
12.J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett. 90, 192111 (2007).
13.X. Shi, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).
14.G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).
15.X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).
16.J. R. Salvador, J. Yang, X. Shi, H. Wang, A. A. Wereszczak, H. Kong, and C. Uher, Philosophical Magazine 89, 1517 (2009).
17.Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen, ActaMaterialia 58, 3995 (2010).
18.H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2008).
19.Y. Chen, Y. Kawamura, J. Hayashi, and C. Sekine, Jpn. J. Appl. Phys. 54, 055501 (2015).
20.J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. B 80, 115329 (2009).
21.T. Dahal, Q. Jie, G. Joshi, S. Chen, C. Guo, Y. Lan, and Z. Ren, Acta Mater. 75, 316 (2014).
22.Y. Tang, S. Chen, and G. J. Snyder, J.Materiomics 1, 75 (2015).
23.X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).
24.X. Shi, J. Yang, J. R. Salvador, M. Chi, Jung Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).
25.G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).
26.G. Tan, Y. Zheng, and X. Tang, Appl. Phys. Lett. 103, 183904 (2013).
27.X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).

Data & Media loading...


Article metrics loading...



For filled skutterudites, element Yb is one of the most common and important fillers. However, the optimal carrier concentration range in Y bCoSb filled skutterudites has not been determined as a result of the low Yb filling fraction limit. In this study, a non-equilibrium fabrication process (MS-SPS process), consisting of a melt-spinning method and a spark plasma sintering technique, has been applied to prepare Y bCoSb samples. The Yb filling fraction is successfully extended to 0.35, which provides the possibility to clarify the optimal carrier concentration range for Yb-filled skutterudites. High carrier concentrations, with a maximum of around 1 × 1021 cm−3, were achieved in the MS-SPS Y bCoSb samples due to the significantly enhanced Yb filling fractions. The phase compositions, lattice parameters, electrical and thermal transport properties of the MS-SPS Y bCoSb samples with high carrier concentrations were systematically investigated. An optimal carrier concentration range of around 5 ∼ 6 × 1020 cm−3, corresponding to the actual Yb filling fraction of around 0.21∼0.26, has been determined, which displays the highest thermoelectric performance in Y bCoSb thermoelectric materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd