Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936829
1.
1.D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995).
2.
2.B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
http://dx.doi.org/10.1126/science.272.5266.1325
3.
3.B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Phys. Rev. B 56, 15081 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.15081
4.
4.W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, Nat. Commun. 6, 6197 (2015).
http://dx.doi.org/10.1038/ncomms7197
5.
5.G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Horky, M. Zehetbauerd, and P. Rogl, Acta Mater. 91, 227 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.03.008
6.
6.J. Yu, W. Zhao, P. Wei, W. Zhu, H. Zhou, Z. Liu, D. Tang, B. Lei, and Q. Zhang, Appl. Phys. Lett. 104, 142104 (2014).
http://dx.doi.org/10.1063/1.4870003
7.
7.S. Ballikaya and C. Uher, J. Alloys Compd. 585, 168 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.09.124
8.
8.V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, Nature 395, 876 (1998).
http://dx.doi.org/10.1038/27625
9.
9.G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3551
10.
10.J. Yang, L. Xi, W. Zhang, L. Chen, and J. Yang, J. Electron. Mater. 38, 1397 (2009).
http://dx.doi.org/10.1007/s11664-009-0703-9
11.
11.X. Shi, S. Bai, L. Xi, J. Yang, W. Zhang, L. Chen, and J. Yang, J. Mater. Res. 26, 1745 (2011).
http://dx.doi.org/10.1557/jmr.2011.84
12.
12.J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett. 90, 192111 (2007).
http://dx.doi.org/10.1063/1.2737422
13.
13.X. Shi, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.185503
14.
14.G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).
http://dx.doi.org/10.1063/1.1311597
15.
15.X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).
http://dx.doi.org/10.1063/1.2172705
16.
16.J. R. Salvador, J. Yang, X. Shi, H. Wang, A. A. Wereszczak, H. Kong, and C. Uher, Philosophical Magazine 89, 1517 (2009).
http://dx.doi.org/10.1080/14786430903019099
17.
17.Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen, ActaMaterialia 58, 3995 (2010).
18.
18.H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2008).
http://dx.doi.org/10.1063/1.3054158
19.
19.Y. Chen, Y. Kawamura, J. Hayashi, and C. Sekine, Jpn. J. Appl. Phys. 54, 055501 (2015).
http://dx.doi.org/10.7567/JJAP.54.055501
20.
20.J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. B 80, 115329 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115329
21.
21.T. Dahal, Q. Jie, G. Joshi, S. Chen, C. Guo, Y. Lan, and Z. Ren, Acta Mater. 75, 316 (2014).
http://dx.doi.org/10.1016/j.actamat.2014.05.019
22.
22.Y. Tang, S. Chen, and G. J. Snyder, J.Materiomics 1, 75 (2015).
http://dx.doi.org/10.1016/j.jmat.2015.03.008
23.
23.X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).
http://dx.doi.org/10.1063/1.2920210
24.
24.X. Shi, J. Yang, J. R. Salvador, M. Chi, Jung Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).
http://dx.doi.org/10.1021/ja111199y
25.
25.G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).
http://dx.doi.org/10.1016/j.actamat.2013.09.039
26.
26.G. Tan, Y. Zheng, and X. Tang, Appl. Phys. Lett. 103, 183904 (2013).
http://dx.doi.org/10.1063/1.4827555
27.
27.X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).
http://dx.doi.org/10.1063/1.2425007
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936829
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936829
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936829
2015-11-24
2016-12-03

Abstract

For filled skutterudites, element Yb is one of the most common and important fillers. However, the optimal carrier concentration range in Y bCoSb filled skutterudites has not been determined as a result of the low Yb filling fraction limit. In this study, a non-equilibrium fabrication process (MS-SPS process), consisting of a melt-spinning method and a spark plasma sintering technique, has been applied to prepare Y bCoSb samples. The Yb filling fraction is successfully extended to 0.35, which provides the possibility to clarify the optimal carrier concentration range for Yb-filled skutterudites. High carrier concentrations, with a maximum of around 1 × 1021 cm−3, were achieved in the MS-SPS Y bCoSb samples due to the significantly enhanced Yb filling fractions. The phase compositions, lattice parameters, electrical and thermal transport properties of the MS-SPS Y bCoSb samples with high carrier concentrations were systematically investigated. An optimal carrier concentration range of around 5 ∼ 6 × 1020 cm−3, corresponding to the actual Yb filling fraction of around 0.21∼0.26, has been determined, which displays the highest thermoelectric performance in Y bCoSb thermoelectric materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936829.html;jsessionid=JjOoNtYd5had03FG0jbg5Wca.x-aip-live-06?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936829&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936829&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936829'
Right1,Right2,Right3,