Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. R. Babu, A. K. Parande, S. Raghu, and T. P. Kumar, J. Cotton Sci. 11, 141 (2007).
2.F. I. Hai, K. Yamamoto, and K. Fukushi, Crit. Rev. Environ. Sci. Technol. 37, 315 (2007).
3.T. Robinson, G. McMullan, R. Marchant, and P. Nigam, Bioresour. Technol. 77, 247 (2001).
4.V. Golob, A. Vinder, and M. Simonič, Dyes Pigments 67, 93 (2005).
5.G. S. Simate, S. E. Iyuke, S. Ndlovu, and M. Heydenrych, Water Res. 46, 1185 (2012).
6.Z. Yang, H. Yan, H. Yang, H. Li, A. Li, and R. Cheng, Water Res. 47, 3037 (2013).
7.A. K. Geim and K.S. Novoselov, Nature. Mater. 6, 183 (2007).
8.Z. Wu, L. Zhang, Q. Guan, P. Ning, and D. Ye, Chem. Eng. J. 258, 77 (2014).
9.G. Zhao, J. Li, X. Ren, C. Chen, and X. Wang, Environ. Sci. Technol. 45, 10454 (2011).
10.S. T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, and H. Wang, J. Colloid Interface Sci. 359, 24 (2011).
11.V. V. Chagovets, M. V. Kosevich, S. G. Stepanian, O. A. Boryak, V. S. Shelkovsky, V. V. Orlov, V. S. Leontiev, V. A. Pokrovskiy, L. Adamowicz, and V. A. Karachevtsev, J. Phys. Chem. C. 116, 20579 (2012).
12.C. J. Shih, S. Lin, R. Sharma, M. S. Strano, and D. Blankschtein, Langmuir 28, 235 (2012).
13.S. Iijima, Nature 354, 56 (1991).
14.H. Sun, J. Phys. Chem. B 102, 7338 (1998).
15.A. Gavezzotti, New J. Chem. 35, 1360 (2011).
16.W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
17.A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).
18.N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, ACS Nano 4, 2300 (2010).
19.Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, and R. Zhou, Nature Nanotech. 8, 594 (2013).
20.R. Rohs, H. Sklenar, R. Lavery, and B. Röder, J. Am. Chem. Soc. 122, 2860 (2000).
21.S. Nosé, J. Phys. Chem. 81, 511 (1984).
22.H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
23.R. W. Hockney and J. W. Eastwood, The Chemical Rubber Company Press, Boca Raton, 1998.
24.T. Wen, X. Wu, X. Tan, X. Wang, and A. Xu, ACS Appl. Mater. Interfaces 5, 3304 (2013).
25.D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
26.S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
27.Z. Yang, B. Yuan, X. Huang, J. Zhou, J. Cai, H. Yang, A. Li, and R. Cheng, Water Res. 46, 107 (2012).
28.K. Yang and B. Xing, Chem. Rev. 110, 5989 (2010).
29.J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, and Q. Xu, Chem. Eng. J. 259, 53 (2015).
30.Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng, and Y. Wu, Water Res. 67, 330 (2014).
31.A. D. Becke, “Density–functional thermochemistry, III,” J. Chem. Phys. 98, 5648 (1993).
32.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2009.
33.See supplementary material at for detailed methods on description of the prepared procedures and characterization methods of GO; chemical structures and molecular sizes of MB calculated from the software of Chem3D Pro 14.0 using the Minimize Energy function (Fig. S1); SEM (top) and TEM (bottom) images of graphite (a) and GO (b) (Fig. S2); FTIR spectra of graphite and GO (Fig. S3); XRD (a) and Raman (b) spectra of GO (Fig. S4); photos of the flocculation performances of GO (a) and PAM (b) for MB removal from aqueous solutions (Fig. S5); photos of the structure of the flocs. (a) GO; (b) PAM (Fig. S6); Zeta potential-pH profiles of GO (Fig. S7); the flocculation performance of GO and PAM at different pH conditions for MB removal (Table S1); and a 6 ns NPT molecular dynamics video on the interaction of GO and MB+ in aqueous solution (Movie S1).[Supplementary Material]

Data & Media loading...


Article metrics loading...



Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO) as a flocculant to remove methylene blue (MB) from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion) character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd