Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/11/10.1063/1.4936850
1.
1.U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Thin Solid Films 513, 124 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.03.033
2.
2.J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, “High power impulse magnetron sputtering discharge,” J. Vac. Sci. Technol., A 30, 030801 (2012).
http://dx.doi.org/10.1116/1.3691832
3.
3.D. Lundin and K. Sarakinos, “An introduction to thin film processing using high-power impulse magnetron sputtering,” J. Mater. Res. 27, 780792 (2012).
http://dx.doi.org/10.1557/jmr.2012.8
4.
4.K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 16611684 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.11.013
5.
5.R. Bandorf, V. Sittinger, and G. Bräuer, “4.04 - High Power Impulse Magnetron Sputtering – HIPIMS,” Comprehensive Materials Processing (Elsevier, Oxford, 2014), Vol.4, pp. 7599.
6.
6.J. T. Gudmundsson, J. Alami, and U. Helmersson, “Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge,” Surf. Coat. Technol. 161, 249256 (2002).
http://dx.doi.org/10.1016/S0257-8972(02)00518-2
7.
7.J. Bohlmark, J. Alami, C. Christou, A. P. Ehiasarian, and U. Helmersson, “Ionization of sputtered metals in high power pulsed magnetron sputtering,” J. Vac. Sci. Technol., A 23, 1822 (2005).
http://dx.doi.org/10.1116/1.1818135
8.
8.J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig, “On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering,” J. Phys. D: Appl. Phys. 42, 015304 (2009).
http://dx.doi.org/10.1088/0022-3727/42/1/015304
9.
9.M. Sameulsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Technol. 205, 591 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2010.07.041
10.
10.A. P. Ehiasarian, J. G. Wen, and I. Petrov, “Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion,” J. Appl. Phys. 101, 054301 (2007).
http://dx.doi.org/10.1063/1.2697052
11.
11.K. Sarakinos, J. Alami, and M. Wuttig, “Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering,” J. Phys. D: Appl. Phys. 40, 2108 (2007).
http://dx.doi.org/10.1088/0022-3727/40/7/037
12.
12.B. Agnarsson, F. Magnus, T. K. Tryggvason, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, “Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering,” Thin Solid Films 545, 445450 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.07.058
13.
13.A. Anders, “Discharge physics of high power impulse magnetron sputtering,” Surf. Coat. Technol. 205, S1S9 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.03.081
14.
14.A. Anders, J. Andersson, and A. P. Ehiasarian, “High power impulse magnetron sputtering: Current-voltage-time characterisctics indicate the onset of sustained self-sputtering,” J. Appl. Phys. 102, 113303 (2007).
http://dx.doi.org/10.1063/1.2817812
15.
15.A. Anders, “Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions,” Appl. Phys. Lett. 92, 201501 (2008).
http://dx.doi.org/10.1063/1.2936307
16.
16.M. Hála, N. Viau, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Dynamics of reactive high-power impulse magnetron sputtering discharge studied by time- and space-resolved optical emission spectroscopy and fast imaging,” J. Appl. Phys. 107, 043305 (2010).
http://dx.doi.org/10.1063/1.3305319
17.
17.J. Andersson and A. Anders, “Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion,” Appl. Phys. Lett. 92, 221503 (2008).
http://dx.doi.org/10.1063/1.2938414
18.
18.J. Andersson and A. Anders, “Self-sputtering far above the runaway threshold: An extraordinary metal-ion generator,” Phys. Rev. Lett. 102, 045003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.045003
19.
19.J. Čapek, M. Hála, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field,” J. Appl. Phys. 111, 023301 (2012).
http://dx.doi.org/10.1063/1.3673871
20.
20.A. Anders, J. Čapek, M. Hála, and L. Martinu, “The ‘recycling trap’: a generalized explanation of discharge runaway in high-power impulse magnetron sputtering,” J. Phys. D: Appl. Phys. 45, 012003 (2012).
http://dx.doi.org/10.1088/0022-3727/45/1/012003
21.
21.M. Hála, J. Čapek, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Hysteresis-free deposition of niobium oxide films by hipims using different pulse management strategies,” J. Phys. D: Appl. Phys. 45, 055204 (2012).
http://dx.doi.org/10.1088/0022-3727/45/5/055204
22.
22.M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113, 133302 (2013).
http://dx.doi.org/10.1063/1.4799199
23.
23.V. Straňák, M. Quaas, H. Wulff, Z. Hubička, S. Wrehde, M. Tichý, and R. Hippler, “Formation of TiOx films produced by high-power pulsed magnetron sputtering,” J. Phys. D: Appl. Phys. 41, 055202 (2008).
http://dx.doi.org/10.1088/0022-3727/41/5/055202
24.
24.F. Magnus, O. B. Sveinsson, S. Olafsson, and J. T. Gudmundsson, “Current-voltage-time characteristics of the reactive Ar/N2 high power impulse magnetron sputtering discharge,” J. Appl. Phys. 110, 083306 (2011).
http://dx.doi.org/10.1063/1.3653233
25.
25.T. Kubart, T. Nyberg, and S. Berg, “Modelling of low energy ion sputtering from oxide surfaces,” J. Phys. D: Appl. Phys. 43, 205204 (2010).
http://dx.doi.org/10.1088/0022-3727/43/20/205204
26.
26.D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. D. Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101, 013301 (2007).
http://dx.doi.org/10.1063/1.2404583
27.
27.M. Hála, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Dynamics of HiPIMS discharge operated in oxygen,” IEEE Trans. Plasma Sci. 39, 25822583 (2011).
http://dx.doi.org/10.1109/TPS.2011.2150248
28.
28.F. Magnus, T. K. Tryggvason, S. Olafsson, and J. T. Gudmundsson, “Current-voltage-time characteristics of the reactive Ar/O2 high power impulse magnetron sputtering discharge,” J. Vac. Sci. Technol. A 30, 050601 (2012).
http://dx.doi.org/10.1116/1.4732735
29.
29.D. Horwat and A. Anders, “Compression and strong rarefaction in high power impulse magnetron sputtering discharges,” J. Appl. Phys. 108, 123306 (2010).
http://dx.doi.org/10.1063/1.3525986
30.
30.S. Berg, H. O. Blom, M. Moradi, and C. Nender, “Process modeling of reactive sputtering,” J. Vac. Sci. Technol., A 7, 1225 (1989).
http://dx.doi.org/10.1116/1.576259
31.
31.A. Rauch, R. J. Mendelsberg, J. M. Sanders, and A. Anders, “Plasma potential mapping of high power impulse magnetron sputtering discharges,” J. Appl. Phys. 111, 083302 (2012).
http://dx.doi.org/10.1063/1.3700242
32.
32.D. R. Lide, CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, Florida, 2003).
33.
33.C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, “Single and double ionization of diatomic molecules in strong laser fields,” Phys. Rev. A: At., Mol., Opt. Phys. 58, R4271R4274 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.R4271
34.
34.A. P. Ehiasarian, J. Andersson, and A. Anders, “Distance-dependent plasma composition and ion energy in high power impulse magnetron sputtering,” J. Phys. D: Appl. Phys. 43, 275204 (2010).
http://dx.doi.org/10.1088/0022-3727/43/27/275204
35.
35.M. Aiempanakit, U. Helmersson, A. Aijaz, P. Larsson, R. Magnusson, J. Jensen, and T. Kubart, “Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide,” Surf. Coat. Technol. 205, 42484831 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.04.071
36.
36.A. V. Phelps and Z. L. Petrović, “Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons,” Plasma Sources Sci. Technol. 8, R21R44 (1999).
http://dx.doi.org/10.1088/0963-0252/8/3/201
37.
37.R. A. Baragiola, “Electron emission from surfaces by impact of polyatomic ions and cosmic dust,” Nucl. Instr. Meth. Phys. Res. B 88, 3543 (1994).
http://dx.doi.org/10.1016/0168-583X(94)96077-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/11/10.1063/1.4936850
Loading
/content/aip/journal/adva/5/11/10.1063/1.4936850
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/11/10.1063/1.4936850
2015-11-25
2016-09-30

Abstract

This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/Odischarge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/11/1.4936850.html;jsessionid=R0RVT5wTZjwTddc7v2g5YH22.x-aip-live-02?itemId=/content/aip/journal/adva/5/11/10.1063/1.4936850&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/11/10.1063/1.4936850&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936850'
Right1,Right2,Right3,