Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937423
1.
1.M. F. Danca, Chaos 18(3), 033111 (2008).
http://dx.doi.org/10.1063/1.2965524
2.
2.B. Epureanu, S. Trickey, and E. Dowel, Nonlinear Dyn 15(2), 191-205 (1998).
http://dx.doi.org/10.1023/A:1008242227796
3.
3.H. Ma, V. Deshmukh, E. Butcher, and V. Averina, Communications in Nonlinear Science and Numerical Simulation 10(5), 479-497 (2005).
http://dx.doi.org/10.1016/j.cnsns.2003.12.007
4.
4.C.-F. Hsu, Nonlinear Dyn 73(3), 1631-1643 (2013).
http://dx.doi.org/10.1007/s11071-013-0891-y
5.
5.C. Elmas, O. Ustun, and H. H. Sayan, Expert Syst Appl 34(1), 657-664 (2008).
http://dx.doi.org/10.1016/j.eswa.2006.10.002
6.
6.C.-K. Lai and K.-K. Shyu, IEEE Transactions on Industrial Electronics 52(2), 499-507 (2005).
http://dx.doi.org/10.1109/TIE.2005.844230
7.
7.M. Roopaei and M. Z. Jahromi, Chaos 18(3), 033133 (2008).
http://dx.doi.org/10.1063/1.2980046
8.
8.H. Melkote, F. Khorrami, S. Jain, and M. S. Mattice, IEEE Transactions on Control Systems Technology 7(2), 212-221 (1999).
http://dx.doi.org/10.1109/87.748147
9.
9.P. P. Yip and J. K. Hedrick, Int J Control 71(5), 959-979 (1998).
http://dx.doi.org/10.1080/002071798221650
10.
10.J. Yu, B. Chen, H. Yu, and J. Gao, Nonlinear Analysis: Real World Applications 12(1), 671-681 (2011).
http://dx.doi.org/10.1016/j.nonrwa.2010.07.009
11.
11.J. Lei, X. Wang, and Y. Lei, Communications in Nonlinear Science and Numerical Simulation 14(8), 3439-3448 (2009).
http://dx.doi.org/10.1016/j.cnsns.2008.12.010
12.
12.S. Luo, Chaos 24(3), 5880-5885 (2014).
13.
13.D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, IEEE Trans Automat Contr 45(10), 1893-1899 (2000).
http://dx.doi.org/10.1109/TAC.2000.880994
14.
14.D. Wang and J. Huang, IEEE Transactions on Neural Networks 16(1), 195-202 (2005).
http://dx.doi.org/10.1109/TNN.2004.839354
15.
15.T.-P. Zhang and S. Ge, Automatica 44(7), 1895-1903 (2008).
http://dx.doi.org/10.1016/j.automatica.2007.11.025
16.
16.J. Na, X. Ren, G. Herrmann, and Z. Qiao, Control Eng Pract 19(11), 1328-1343 (2011).
http://dx.doi.org/10.1016/j.conengprac.2011.07.005
17.
17.Y. Li, S. Tong, and T. Li, Nonlinear Analysis: Real World Applications 14(1), 483-494 (2013).
http://dx.doi.org/10.1016/j.nonrwa.2012.07.010
18.
18.J.-T. Huang, IEEE Transactions on Neural Networks and Learning Systems 23(11), 1714-1725 (2012).
http://dx.doi.org/10.1109/TNNLS.2012.2213305
19.
19.X.-J. Wu, X.-L. Wu, X.-Y. Luo, and X.-P. Guan, IET Control Theory & Applications 6(12), 1948-1957 (2012).
http://dx.doi.org/10.1049/iet-cta.2011.0543
20.
20.S. Seshagiri and H. K. Khalil, IEEE Transactions on Neural Networks 11(1), 69-79 (2000).
http://dx.doi.org/10.1109/72.822511
21.
21.J. M. Steele, The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities (Cambridge University Press, 2004).
22.
22.B. Huo, Y. Li, and S. Tong, IET Control Theory & Applications 6(17), 2704-2715 (2012).
http://dx.doi.org/10.1049/iet-cta.2012.0435
23.
23.S. Luo, J. Wang, S. Wu, and K. Xiao, Nonlinear Dyn 78(2), 1193-1204 (2014).
http://dx.doi.org/10.1007/s11071-014-1507-x
24.
24.Z.-M. Ge, J.-W. Cheng, and Y.-S. Chen, Chaos, Solitons & Fractals 22(5), 1165-1182 (2004).
http://dx.doi.org/10.1016/j.chaos.2004.03.036
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937423
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937423
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937423
2015-12-04
2016-12-05

Abstract

In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937423.html;jsessionid=xXkE4MOErVrrubA4OOjFhzBj.x-aip-live-02?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937423&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937423&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937423'
Right1,Right2,Right3,