Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937475
1.
1.T. W. Ebbesen and T. Takada, Carbon. 33, 973 (1995).
http://dx.doi.org/10.1016/0008-6223(95)00025-9
2.
2.J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature. 391, 59 (1998).
http://dx.doi.org/10.1038/34139
3.
3.T.W. Odom, J. Huang, P. Kim, and C.M. Lieber, Nature. 391, 62 (1998).
http://dx.doi.org/10.1038/34145
4.
4.P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Science. 278, 100 (1997).
http://dx.doi.org/10.1126/science.278.5335.100
5.
5.L.A. Chernozatonskii, V.I. Artyukhov, and P.B. Sorokin, Phys. Rev. B. 74, 045402 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045402
6.
6.I. Hanasaki and A. Nakatani, Nanotechnology. 17, 2794 (2006).
http://dx.doi.org/10.1088/0957-4484/17/11/012
7.
7.D. C. Wei and Y. Q. Liu, Adv. Mater. 20, 2815 (2008).
http://dx.doi.org/10.1002/adma.200800589
8.
8.M. Khazaei, S.U. Lee, F. Pichierri, and Y. Kawazoe, J. Phys. Chem. C. 111, 12175 (2007).
http://dx.doi.org/10.1021/jp0689767
9.
9.Z. Yao, H.W.C. Postma, L. Balents, and C. Dekker, Nature. 402, 273 (1999).
http://dx.doi.org/10.1038/46241
10.
10.C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, Phys. Rev. Lett. 85, 3476 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3476
11.
11.C. W. Zhou, J. Kong, E. Yenilmez, and H. J. Dai, Science. 290, 1552 (2000).
http://dx.doi.org/10.1126/science.290.5496.1552
12.
12.P. R. Bandaru, C. Daraio, S. Jin, and A. M. Rao, Nat. Mater. 4, 663 (2005).
http://dx.doi.org/10.1038/nmat1450
13.
13.H. Q. Xu, Nat. Mater. 4, 649 (2005).
http://dx.doi.org/10.1038/nmat1471
14.
14.G.Y. Tseng and J.C. Ellenbogen, Science. 294, 1293 (2001).
http://dx.doi.org/10.1126/science.1066920
15.
15.S. Iijima, T. Ichihashi, and Y. Ando, Nature. 356, 776 (1992).
http://dx.doi.org/10.1038/356776a0
16.
16.M. Ouyang, J.L. Huang, C.L. Cheung, and C.M. Lieber, Science. 291, 97 (2001).
http://dx.doi.org/10.1126/science.291.5501.97
17.
17.Z. Qin, Q. H. Qin, and X. Q. Feng, Phys. Lett. A. 372, 6661 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.09.010
18.
18.Z. Kang, M. Li, and Q. Q. Tang, Comput. Mater. Sci. 50, 253 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.08.011
19.
19.M. Li, Z. Kang, R. Li, X. H. Meng, and Y. J. Lu, J. Phy. D: Appl. Phys. 46, 495301 (2013).
http://dx.doi.org/10.1088/0022-3727/46/49/495301
20.
20.M. Li, Z. Kang, P. Y. Yang, X. H. Meng, and Y. J Lu, Comput. Mater. Sci. 67, 390 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.09.034
21.
21.Y. Kinoshita, M. Murashima, M. Kawachi, and N. Ohno, Comp. Mater. Sci. 70, 1 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.12.033
22.
22.G. W. Ho, A. T. S. Wee, and J. Lin, Appl. Phys. Lett. 79, 260 (2001).
http://dx.doi.org/10.1063/1.1383279
23.
23.M. Yudasakaa, T. Ichihashib, D. Kasuyac, H. Kataurad, and S. Iijima, Carbon. 41, 1273 (2003).
http://dx.doi.org/10.1016/S0008-6223(03)00076-9
24.
24.S. K. Doorn, M. J. O’Connell, L. Zheng, Y. T. Zhu, S. Huang, and J. Liu, Phys. Rev. Lett. 94, 016802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.016802
25.
25.Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao, Y. T. Zhu, and Z. Liu, Nat. Mater. 6, 283 (2007).
http://dx.doi.org/10.1038/nmat1865
26.
26.L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications Inc, New York, 1953).
27.
27.D.J. Mead, J. Sound. Vib. 190, 495 (1996).
http://dx.doi.org/10.1006/jsvi.1996.0076
28.
28.S. Parmley, T. Zobrist, T. Clough, A. Perez-miller, M. Makela, and R. Yu, Appl. Phys.Lett. 67, 777 (1995).
http://dx.doi.org/10.1063/1.115464
29.
29.C. Elachi, Proceedings of the IEEE. 64, 1666 (1976).
http://dx.doi.org/10.1109/PROC.1976.10409
30.
30.P. Langlet, A.-C. Hladky-hennion, and J.-N. Decarpigny, J. Acoust. Soc. Am. 98, 2792 (1995).
http://dx.doi.org/10.1121/1.413244
31.
31.X. F. Liu, Z. H. Zhang, and W. L. Guo, Small. 8, 1405 (2013).
http://dx.doi.org/10.1002/smll.201202988
32.
32.Z. H. Zhang, W. L. Guo, and B. I. Yakobson, Nanoscale. 5, 6381 (2013).
http://dx.doi.org/10.1039/c3nr01180a
33.
33.S. Iijima and T. Ichihashi, Nature. 356, 776 (1992).
http://dx.doi.org/10.1038/356776a0
34.
34.H. Kim, J. Lee, Y.J. Song, B.Y. Choi, S.J. Kahng, and Y. Kuk, Thin Solid Films. 464, 335 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.06.042
35.
35.G. Wu and B.W. Li, Phy. Rev. B. 76, 085424 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085424
36.
36.C. Li and T.-W. Chou, Int. J. Solid Struct. 40, 2487 (2003).
http://dx.doi.org/10.1016/S0020-7683(03)00056-8
37.
37.A.K. Rappe, C.J. Casewit, K.S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).
http://dx.doi.org/10.1021/ja00051a040
38.
38.B.R. Gelin, Molecular modeling of polymer structures and properties (Hanser/Gardner Publishers, Cincinnati, 1994).
39.
39.K.I. Tserpes and P. Papanikos, Compos. Part B 36, 468 (2005).
http://dx.doi.org/10.1016/j.compositesb.2004.10.003
40.
40.K. S. Karane, Introductory nuclear physics, 3rd ed. (Wiley & Sons, New York, 1987).
41.
41.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
42.
42.J.Q. Li and H.J. Shen, Mol. Phys. 113, 753 (2015).
http://dx.doi.org/10.1080/00268976.2014.974701
43.
43.J.S. Jensen, J. Sound Vib. 266, 1053 (2003).
http://dx.doi.org/10.1016/S0022-460X(02)01629-2
44.
44.D.L. Yu, J.H. Wen, Y.Z. Liu, J. Qiu, and G. Wang, Chin. J. Mech. Eng. 19, 25 (2006).
http://dx.doi.org/10.3901/CJME.2006.01.025
45.
45.H. J. Xiang and Z. F. Shi, Comput. Struct. 87, 1559 (2009).
http://dx.doi.org/10.1016/j.compstruc.2009.07.009
46.
46.C. Li and T.-W. Chou, Phys. Rev. B. 73, 245407 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245407
47.
47.W. T. Thomson, Theory of Vibration with Applications (Prentice-Hall, 1981).
48.
48.L. F. Wang, H. Y. Hu, and W. L. Guo, Nanotechnology. 17, 1408 (2006).
http://dx.doi.org/10.1088/0957-4484/17/5/041
49.
49.L. F. Wang and H. Y. Hu, Phys. Rev. B. 71, 195412 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195412
50.
50.C. Li and T.-W. Chou, Phys. Rev. B. 68, 073405 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.073405
51.
51.W. L. Guo, Y. F. Guo, H. J. Gao, Q. S. Zheng, and W. Y. Zhong, Phys. Rev. Lett. 91, 125501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.125501
52.
52.M. Meo and M. Rossi, Compos. Sci. Technol. 66, 1597 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.11.015
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937475
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937475
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937475
2015-12-04
2016-12-03

Abstract

The longitudinal vibration band gaps in periodic (, 0)–(2, 0) single-walled carbon nanotube(SWCNT) intramolecular junctions(IMJs) are investigated based on the finite element calculation. The frequency ranges of band gaps in frequency response functions(FRF) simulated by finite element method(FEM) show good agreement with those in band structure obtained by simple spring-mass model. Moreover, a comprehensive parametric study is also conducted to highlight the influences of the geometrical parameters such as the size of unit cell, component ratios of the IMJs and diameters of the CNT segments as well as geometric imperfections on the first band gap. The results show that the frequency ranges and the bandwidth of the gap strongly depend on the geometrical parameters. Furthermore, the influences of geometrical parameters on gaps are nuanced in IMJs with different topological defects. The existence of vibration band gaps in periodic IMJs lends a new insight into the development of CNT-based nano-devices in application of vibration isolation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937475.html;jsessionid=70sG7ZIn1HLmEPfpumJm13JH.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937475&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937475&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937475'
Right1,Right2,Right3,