Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937557
1.
1.J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A. Ross, IEEE Magn. Lett. 3, 3000104 (2012).
http://dx.doi.org/10.1109/LMAG.2012.2188621
2.
2.D. A. Allwood, G. Xiong, C. C. Faulkner, and D. Atkinson, Science 309, 1688-1692 (2005).
http://dx.doi.org/10.1126/science.1108813
3.
3.S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190-194 (2008).
http://dx.doi.org/10.1126/science.1145799
4.
4.S. Bandyopadhyay and M. Cahay, Nanotechnology 20, 412001 (2009).
http://dx.doi.org/10.1088/0957-4484/20/41/412001
5.
5.J. A. Currivan, S. Siddiqui, S. Ahn, L. Tryputen, G. S. D. Beach, M. A. Baldo, and C. A. Ross, J. Vac. Sci. Tech. B 32, 021601 (2014).
http://dx.doi.org/10.1116/1.4867753
6.
6.M. Albert, M. Franchin, T. Fischbacher, G. Meier, and H. Fangohr, J. Phys.: Condens. Matter 24, 024219 (2012).
http://dx.doi.org/10.1088/0953-8984/24/2/024219
7.
7.S. Fukami, Y. Nakatani, T. Suzuki, K. Nagahara, N. Ohshima, and N. Ishiwata, Appl. Phys. Lett. 95, 232504 (2009).
http://dx.doi.org/10.1063/1.3271827
8.
8.M.-Y. Im, L. Bocklage, P. Fischer, and G. Meier, Phys. Rev. Lett. 102, 147204 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.147204
9.
9.M. Kläui, J. Phys.: Condens. Matter 20, 313001 (2008).
http://dx.doi.org/10.1088/0953-8984/20/31/313001
10.
10.T. Suzuki, S. Fukami, N. Ohshima, K. Nagahara, and N. Ishiwata, J. Appl. Phys. 103, 113913 (2008).
http://dx.doi.org/10.1063/1.2938843
11.
11.H. Y. Yuan and X. R. Wang, Phys. Rev. B 89, 054423 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.054423
12.
12.V. Uhlíř, S. Pizzini, N. Rougemaille, J. Novotný, V. Cros, E. Jiménez, G. Faini, L. Heyne, F. Sirotti, C. Tieg, A. Bendounan, F. Maccherozzi, R. Belkhou, J. Grollier, A. Anane, and J. Vogel, Phys. Rev. B 81, 224418 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224418
13.
13.M. Jamali, K.-J. Lee, and H. Yang, New J. Phys. 14, 033010 (2012).
http://dx.doi.org/10.1088/1367-2630/14/3/033010
14.
14.E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos, Phys. Rev. B 75, 174409 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174409
15.
15.J. Leliaert, B. Van de Wiele, A. Vansteenkiste, L. Laurson, G. Durin, L. Dupré, and B. Van Waeyenberge, J. Appl. Phys. 115, 233903 (2014).
http://dx.doi.org/10.1063/1.4883297
16.
16.Y. Nakatani, A. Thiaville, and J. Miltat, Nature Mater. 2, 521-3 (2003).
http://dx.doi.org/10.1038/nmat931
17.
17.C. Burrowes, D. Ravelosona, C. Chappert, S. Mangin, Eric E. Fullerton, J. A. Katine, and B. D. Terris, Appl. Phys. Lett. 93, 172513 (2008).
http://dx.doi.org/10.1063/1.2998393
18.
18.S. Glathe and R. Mattheis, Phys. Rev. B 85, 024405 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024405
19.
19.T. Komine, H. Murakami, T. Nagayama, and R. Sugita, IEEE Trans. Magn. 44, 2516-2518 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2002614
20.
20.S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach, and C. H. Marrows, Phys. Rev. Lett. 102, 127203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.127203
21.
21.J. Ryu and H.-W. Lee, J. Appl. Phys. 105, 093929 (2009).
http://dx.doi.org/10.1063/1.3125522
22.
22.OOMMF: Object Oriented MicroMagnetic Framework (http://math.nist.gov/oommf).
23.
23.D. Petit, A.-V. Jausovec, H. T. Zeng, E. Lewis, L. O’Brien, D. Read, and R. P. Cowburn, Phys. Rev. B 79, 214405 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.214405
24.
24.G. S. D. Beach, M. Tsoi, and J. L. Erskine, J. Magn. Magn. Mater. 320, 1272-1281 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.021
25.
25.A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhysics Lett. 69, 990-996 (2005).
http://dx.doi.org/10.1209/epl/i2004-10452-6
26.
26.M. Laufenberg, W. Bührer, D. Bedau, P.-E. Melchy, M. Kläui, L. Vila, G. Faini, C. A. F. Vaz, J. A. C. Bland, and U. Rüdiger, Phys. Rev. Lett. 97, 046602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.046602
27.
27.X. Han, Q. Liu, J. Wang, S. Li, Y. Ren, R. Liu, and F. Li, J. Phys. D: Appl. Phys. 9, 42 (2009).
28.
28.H. Luo, D. Wang, J. He, and Y. Lu, J. Phys. Chem. B 109, 1919-1922 (2005).
http://dx.doi.org/10.1021/jp045554t
29.
29.S. Armyanov, Electrochimica Acta 45, 3323-3335 (2000).
http://dx.doi.org/10.1016/S0013-4686(00)00408-4
30.
30.R. C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, NY, 1999).
31.
31.S. Li, C. Potter, D. Palmer, D. D. Eberl, T. Klemmer, J. Spear, C. Reiss, D. Brown, and A. Morrone, IEEE Trans. Magn. 37, 1947-1949 (2001).
http://dx.doi.org/10.1109/20.951017
32.
32.S. Fukami, T. Suzuki, Y. Nakatani, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, and H. Ohno, Appl. Phys. Lett. 98, 082504 (2011).
http://dx.doi.org/10.1063/1.3558917
33.
33.R. Mantovan, A. Lamperti, G. Tallarida, L. Baldi, M. Mariani, B. Ocker, S.-M. Ahn, I. Barisic, and D. Ravelosona, Thin Solid Films 533, 75-78 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.12.111
34.
34.E. R. Lewis, D. Petit, A.-V. Jausovec, L. O’Brien, D. E. Read, H. T. Zeng, and R. P. Cowburn, Phys. Rev. Lett. 102, 057209 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.057209
35.
35.D. L. Mills and J. A. C. Bland, Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures (Elsevier, Amsterdam, 2006).
36.
36.M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, and S. S. P. Parkin, Phys. Rev. Lett. 97, 207205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.207205
37.
37.E. R. Lewis, D. Petit, L. O’Brien, J. Sampaio, A.-V. Jausovec, H. T. Zeng, D. E. Read, and R. P. Cowburn, Nature Mater. 9, 980-983 (2010).
http://dx.doi.org/10.1038/nmat2857
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937557
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937557
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937557
2015-12-07
2016-12-09

Abstract

Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER) is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricatedwires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937557.html;jsessionid=ksKDc_YGeLMcNOe1L_d8tUOv.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937557&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937557&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937557'
Right1,Right2,Right3,