Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A. Ross, IEEE Magn. Lett. 3, 3000104 (2012).
2.D. A. Allwood, G. Xiong, C. C. Faulkner, and D. Atkinson, Science 309, 1688-1692 (2005).
3.S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190-194 (2008).
4.S. Bandyopadhyay and M. Cahay, Nanotechnology 20, 412001 (2009).
5.J. A. Currivan, S. Siddiqui, S. Ahn, L. Tryputen, G. S. D. Beach, M. A. Baldo, and C. A. Ross, J. Vac. Sci. Tech. B 32, 021601 (2014).
6.M. Albert, M. Franchin, T. Fischbacher, G. Meier, and H. Fangohr, J. Phys.: Condens. Matter 24, 024219 (2012).
7.S. Fukami, Y. Nakatani, T. Suzuki, K. Nagahara, N. Ohshima, and N. Ishiwata, Appl. Phys. Lett. 95, 232504 (2009).
8.M.-Y. Im, L. Bocklage, P. Fischer, and G. Meier, Phys. Rev. Lett. 102, 147204 (2009).
9.M. Kläui, J. Phys.: Condens. Matter 20, 313001 (2008).
10.T. Suzuki, S. Fukami, N. Ohshima, K. Nagahara, and N. Ishiwata, J. Appl. Phys. 103, 113913 (2008).
11.H. Y. Yuan and X. R. Wang, Phys. Rev. B 89, 054423 (2014).
12.V. Uhlíř, S. Pizzini, N. Rougemaille, J. Novotný, V. Cros, E. Jiménez, G. Faini, L. Heyne, F. Sirotti, C. Tieg, A. Bendounan, F. Maccherozzi, R. Belkhou, J. Grollier, A. Anane, and J. Vogel, Phys. Rev. B 81, 224418 (2010).
13.M. Jamali, K.-J. Lee, and H. Yang, New J. Phys. 14, 033010 (2012).
14.E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos, Phys. Rev. B 75, 174409 (2007).
15.J. Leliaert, B. Van de Wiele, A. Vansteenkiste, L. Laurson, G. Durin, L. Dupré, and B. Van Waeyenberge, J. Appl. Phys. 115, 233903 (2014).
16.Y. Nakatani, A. Thiaville, and J. Miltat, Nature Mater. 2, 521-3 (2003).
17.C. Burrowes, D. Ravelosona, C. Chappert, S. Mangin, Eric E. Fullerton, J. A. Katine, and B. D. Terris, Appl. Phys. Lett. 93, 172513 (2008).
18.S. Glathe and R. Mattheis, Phys. Rev. B 85, 024405 (2012).
19.T. Komine, H. Murakami, T. Nagayama, and R. Sugita, IEEE Trans. Magn. 44, 2516-2518 (2008).
20.S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach, and C. H. Marrows, Phys. Rev. Lett. 102, 127203 (2009).
21.J. Ryu and H.-W. Lee, J. Appl. Phys. 105, 093929 (2009).
22.OOMMF: Object Oriented MicroMagnetic Framework (
23.D. Petit, A.-V. Jausovec, H. T. Zeng, E. Lewis, L. O’Brien, D. Read, and R. P. Cowburn, Phys. Rev. B 79, 214405 (2009).
24.G. S. D. Beach, M. Tsoi, and J. L. Erskine, J. Magn. Magn. Mater. 320, 1272-1281 (2008).
25.A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhysics Lett. 69, 990-996 (2005).
26.M. Laufenberg, W. Bührer, D. Bedau, P.-E. Melchy, M. Kläui, L. Vila, G. Faini, C. A. F. Vaz, J. A. C. Bland, and U. Rüdiger, Phys. Rev. Lett. 97, 046602 (2006).
27.X. Han, Q. Liu, J. Wang, S. Li, Y. Ren, R. Liu, and F. Li, J. Phys. D: Appl. Phys. 9, 42 (2009).
28.H. Luo, D. Wang, J. He, and Y. Lu, J. Phys. Chem. B 109, 1919-1922 (2005).
29.S. Armyanov, Electrochimica Acta 45, 3323-3335 (2000).
30.R. C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, NY, 1999).
31.S. Li, C. Potter, D. Palmer, D. D. Eberl, T. Klemmer, J. Spear, C. Reiss, D. Brown, and A. Morrone, IEEE Trans. Magn. 37, 1947-1949 (2001).
32.S. Fukami, T. Suzuki, Y. Nakatani, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, and H. Ohno, Appl. Phys. Lett. 98, 082504 (2011).
33.R. Mantovan, A. Lamperti, G. Tallarida, L. Baldi, M. Mariani, B. Ocker, S.-M. Ahn, I. Barisic, and D. Ravelosona, Thin Solid Films 533, 75-78 (2013).
34.E. R. Lewis, D. Petit, A.-V. Jausovec, L. O’Brien, D. E. Read, H. T. Zeng, and R. P. Cowburn, Phys. Rev. Lett. 102, 057209 (2009).
35.D. L. Mills and J. A. C. Bland, Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures (Elsevier, Amsterdam, 2006).
36.M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, and S. S. P. Parkin, Phys. Rev. Lett. 97, 207205 (2006).
37.E. R. Lewis, D. Petit, L. O’Brien, J. Sampaio, A.-V. Jausovec, H. T. Zeng, D. E. Read, and R. P. Cowburn, Nature Mater. 9, 980-983 (2010).

Data & Media loading...


Article metrics loading...



Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER) is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricatedwires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd