Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937626
1.
1.A. De Lorenzi, L. Grando, A. Pesce, P. Bettini, and R. Specogna, IEEE Trans. Dielectr. Electr. Insul. 16, 77 (2009).
http://dx.doi.org/10.1109/TDEI.2009.4784554
2.
2.X. Jun and I. D. Chalmers, J. Phys. D: Appl. Phys. 30, 1055 (1997).
http://dx.doi.org/10.1088/0022-3727/30/7/001
3.
3.S. Tenbohlem and G. Schrocher, IEEE Trans. Dielectr. Electr. Insul. 7, 241 (2000).
http://dx.doi.org/10.1109/94.841816
4.
4.E. Volpov, IEEE Trans. Dielectr. Electr. Insul. 10, 204 (2003).
http://dx.doi.org/10.1109/TDEI.2003.1194101
5.
5.A. Winter and J. Kindersberger, IEEE Trans. Dielectr. Electr. Insul. 19, 1732 (2012).
http://dx.doi.org/10.1109/TDEI.2012.6311522
6.
6.H. Fujinami, T. Takuma, M. Yashima, and T. Kawamoto, IEEE Trans. Power Del. 4, 1765 (1989).
http://dx.doi.org/10.1109/61.32671
7.
7.E. Volpov, IEEE Trans. Dielectr. Electr. Insul. 11, 949 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1387818
8.
8.L. Donzel, F. Greuter, and T. Christen, IEEE DEIS Electr. Insul. Mag. 27, 18 (2011).
http://dx.doi.org/10.1109/MEI.2011.5739419
9.
9.A. Winter, J. Kindersberger, M. Tenzer, V. Hinrichsen, L. Zavattoni, O. Lesaint, M. Muhr, and D. Imamovic, CIGRE Session, Paris, Report D1_ 102_ 2014 (2014).
10.
10.F. Messerer, M. Finkel, and W. Boeck, IEEE Int’1.Sympos. Electr. Insul., Boston, USA 421 (2002).
11.
11.T. Shao, W. Yang, C. Zhang, Z. Niu, P. Yan, and E. Schamiloglu, Appl. Phys. Lett. 105, 071607 (2014).
http://dx.doi.org/10.1063/1.4893884
12.
12.H. Hama, T. Hikosaka, S. Okabe, and H. Okubo, IEEE Trans. Dielectr. Electr. Insul. 14, 508 (2007).
http://dx.doi.org/10.1109/TDEI.2007.344633
13.
13.S. Okabe, G. Ueta, and K. Nojima, IEEE Trans. Dielectr. Electr. Insul. 22, 516 (2015).
http://dx.doi.org/10.1109/TDEI.2014.004513
14.
14.Y. Liu, Z. An, J. Cang, Y. Zhang, and F. Zheng, IEEE Trans. Dielectr. Electr. Insul. 19, 1143 (2012).
http://dx.doi.org/10.1109/TDEI.2012.6259982
15.
15.Y. Liu, Z. An, Q. Yin, F. Zheng, Q. Lei, and Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 20, 1859 (2013).
http://dx.doi.org/10.1109/TDEI.2013.6633718
16.
16.A. P. Kharitonov, Prog. Org. Coat. 61, 192 (2008).
http://dx.doi.org/10.1016/j.porgcoat.2007.09.027
17.
17.A. P. Kharitonov and L. N. Kharitonova, Pure Appl. Chem. 81, 451 (2009).
http://dx.doi.org/10.1351/PAC-CON-08-06-02
18.
18.Y. Liu, Z. An, Q. Yin, F. Zheng, Y. Zhang, and Q. Lei, J. Appl. Phys. 113, 164105 (2013).
http://dx.doi.org/10.1063/1.4803505
19.
19.A. Kumada, S. Okabe, and K. Hidaka, IEEE Trans. Dielectr. Electr. Insul. 11, 122 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1266325
20.
20.A. Kumada and S. Okabe, IEEE Trans. Dielectr. Electr. Insul. 11, 929 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1387815
21.
21.J. Simmons and M. Tam, Phys. Rev. B 7, 3706 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.3706
22.
22.W. Shen, H. Mu, G. Zhang, J. Deng, and D. Tu, J. Appl. Phys. 113, 083706 (2013).
http://dx.doi.org/10.1063/1.4792491
23.
23.J. Li, F. Zhou, D. Min, S. Li, and R. Xia, IEEE Trans. Dielectr. Electr. Insul. 22, 1723 (2015).
http://dx.doi.org/10.1109/TDEI.2015.7116370
24.
24.Y. Liu, L. Li, and X. Du, Appl. Phys. A. 118, 757 (2015).
http://dx.doi.org/10.1007/s00339-014-8796-2
25.
25.A. Cherdoud-Chihani, M Mouzali, and M. J. M. Abadie, J. Appl. Polym. Sci. 87, 2033 (2003).
http://dx.doi.org/10.1002/app.11389
26.
26.T. Yogo and H. Iwahara, J. Mater. Sci. 27, 1499 (1992).
http://dx.doi.org/10.1007/BF00542910
27.
27.C. Li, S. Qi, and D. Zhang, J. Appl. Polym. Sci. 115, 3675 (2010).
http://dx.doi.org/10.1002/app.31469
28.
28.Z. An, Q. Yin, Y. Liu, F. Zheng, Q. Lei, and Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 22, 526 (2015).
http://dx.doi.org/10.1109/TDEI.2014.004551
29.
29.M. Meunier, N. Quirke, and A. Aslanides, J. Chem. Phys. 115, 2876 (2011).
http://dx.doi.org/10.1063/1.1385160
30.
30.D. Tu, W. Liu, G. Zhuang, Z. Liu, and K. Kao, IEEE Trans. Electr. Insul. 24, 581 (1989).
http://dx.doi.org/10.1109/14.34192
31.
31.S. Serra, E. Tosatti, S. Iarlori, S. Scandolo, and G. Santoro, Phys. Rev. B 62, 4389 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.4389
32.
32.M. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, and G. Santoro, Phys. Rev. Lett. 87, 076802 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.076802
33.
33.A. Pedersen, in Gaseous Dielectrics V, edited by L. G. Christophorou and D. W. Bouldin (Pergamon Press, New York, 1987), pp. 235241.
34.
34.W. K. Pratt, Digital Image Processing (Wiley, New York, 1987), pp. 378388.
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937626
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937626
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937626
2015-12-07
2016-12-05

Abstract

Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of AlO-filled epoxy resin were surface fluorinated using a F/N mixture (12.5% F) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on the fluorinated insulators in comparison with the original one. Surface conductivitymeasurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937626.html;jsessionid=KMwwgPVQu1iWzMRpUGMb3ANX.x-aip-live-06?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937626&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937626&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937626'
Right1,Right2,Right3,