Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. De Lorenzi, L. Grando, A. Pesce, P. Bettini, and R. Specogna, IEEE Trans. Dielectr. Electr. Insul. 16, 77 (2009).
2.X. Jun and I. D. Chalmers, J. Phys. D: Appl. Phys. 30, 1055 (1997).
3.S. Tenbohlem and G. Schrocher, IEEE Trans. Dielectr. Electr. Insul. 7, 241 (2000).
4.E. Volpov, IEEE Trans. Dielectr. Electr. Insul. 10, 204 (2003).
5.A. Winter and J. Kindersberger, IEEE Trans. Dielectr. Electr. Insul. 19, 1732 (2012).
6.H. Fujinami, T. Takuma, M. Yashima, and T. Kawamoto, IEEE Trans. Power Del. 4, 1765 (1989).
7.E. Volpov, IEEE Trans. Dielectr. Electr. Insul. 11, 949 (2004).
8.L. Donzel, F. Greuter, and T. Christen, IEEE DEIS Electr. Insul. Mag. 27, 18 (2011).
9.A. Winter, J. Kindersberger, M. Tenzer, V. Hinrichsen, L. Zavattoni, O. Lesaint, M. Muhr, and D. Imamovic, CIGRE Session, Paris, Report D1_ 102_ 2014 (2014).
10.F. Messerer, M. Finkel, and W. Boeck, IEEE Int’1.Sympos. Electr. Insul., Boston, USA 421 (2002).
11.T. Shao, W. Yang, C. Zhang, Z. Niu, P. Yan, and E. Schamiloglu, Appl. Phys. Lett. 105, 071607 (2014).
12.H. Hama, T. Hikosaka, S. Okabe, and H. Okubo, IEEE Trans. Dielectr. Electr. Insul. 14, 508 (2007).
13.S. Okabe, G. Ueta, and K. Nojima, IEEE Trans. Dielectr. Electr. Insul. 22, 516 (2015).
14.Y. Liu, Z. An, J. Cang, Y. Zhang, and F. Zheng, IEEE Trans. Dielectr. Electr. Insul. 19, 1143 (2012).
15.Y. Liu, Z. An, Q. Yin, F. Zheng, Q. Lei, and Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 20, 1859 (2013).
16.A. P. Kharitonov, Prog. Org. Coat. 61, 192 (2008).
17.A. P. Kharitonov and L. N. Kharitonova, Pure Appl. Chem. 81, 451 (2009).
18.Y. Liu, Z. An, Q. Yin, F. Zheng, Y. Zhang, and Q. Lei, J. Appl. Phys. 113, 164105 (2013).
19.A. Kumada, S. Okabe, and K. Hidaka, IEEE Trans. Dielectr. Electr. Insul. 11, 122 (2004).
20.A. Kumada and S. Okabe, IEEE Trans. Dielectr. Electr. Insul. 11, 929 (2004).
21.J. Simmons and M. Tam, Phys. Rev. B 7, 3706 (1973).
22.W. Shen, H. Mu, G. Zhang, J. Deng, and D. Tu, J. Appl. Phys. 113, 083706 (2013).
23.J. Li, F. Zhou, D. Min, S. Li, and R. Xia, IEEE Trans. Dielectr. Electr. Insul. 22, 1723 (2015).
24.Y. Liu, L. Li, and X. Du, Appl. Phys. A. 118, 757 (2015).
25.A. Cherdoud-Chihani, M Mouzali, and M. J. M. Abadie, J. Appl. Polym. Sci. 87, 2033 (2003).
26.T. Yogo and H. Iwahara, J. Mater. Sci. 27, 1499 (1992).
27.C. Li, S. Qi, and D. Zhang, J. Appl. Polym. Sci. 115, 3675 (2010).
28.Z. An, Q. Yin, Y. Liu, F. Zheng, Q. Lei, and Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 22, 526 (2015).
29.M. Meunier, N. Quirke, and A. Aslanides, J. Chem. Phys. 115, 2876 (2011).
30.D. Tu, W. Liu, G. Zhuang, Z. Liu, and K. Kao, IEEE Trans. Electr. Insul. 24, 581 (1989).
31.S. Serra, E. Tosatti, S. Iarlori, S. Scandolo, and G. Santoro, Phys. Rev. B 62, 4389 (2000).
32.M. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, and G. Santoro, Phys. Rev. Lett. 87, 076802 (2001).
33.A. Pedersen, in Gaseous Dielectrics V, edited by L. G. Christophorou and D. W. Bouldin (Pergamon Press, New York, 1987), pp. 235241.
34.W. K. Pratt, Digital Image Processing (Wiley, New York, 1987), pp. 378388.

Data & Media loading...


Article metrics loading...



Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of AlO-filled epoxy resin were surface fluorinated using a F/N mixture (12.5% F) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on the fluorinated insulators in comparison with the original one. Surface conductivitymeasurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd