Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937742
1.
1.P. Fonte et al., Preprint Physics 0502027 (2005).
2.
2.LE Quintern, Y Furusawa, K Fukutsu, and H Holtschmidt, J Photochem Photobiol B 37, 158 (1997).
http://dx.doi.org/10.1016/S1011-1344(96)04414-4
3.
3.A.M. Suhail, E.K. Hassan, S S. Ahmed, and M.K.M Alnoori, Journal of Electron Devices 8, 268 (2010).
4.
4.E Munoz, E Monroy, J L Pau, F Calle, F Omnes, and P Gibart, J. Phys.: Condens. Matter 13, 7115 (2001).
http://dx.doi.org/10.1088/0953-8984/13/32/316
5.
5.M A Khan, J N Kuznia, D T Olson, J M Van Hove, M Blaingame, and L F Reitz, Appl. Phys. Lett. 60, 2917 (1992).
http://dx.doi.org/10.1063/1.106819
6.
6.K. H. Lee, P. C. Chang, S. J. Chang, Y. C. Wang, C. L. Yu, and S. L. Wu, IEEE Sensors journal 9(7), (2009).
7.
7.R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, Semicond. Sci. Technol. 27, 024001 (2012).
http://dx.doi.org/10.1088/0268-1242/27/2/024001
8.
8.P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog, Nature 406, 865 (2000).
http://dx.doi.org/10.1038/35022529
9.
9.S. H. Park and D. Ahn, Appl. Phys. Lett. 90, 013505 (2007).
http://dx.doi.org/10.1063/1.2420795
10.
10.Liwen Sang, Meiyong Liao, and Masatomo Sumiya, Sensors 13, 10482 (2013).
http://dx.doi.org/10.3390/s130810482
11.
11.Atefeh Habibpoor and Hamid R. Mashayekhi, Journal of Physics: Conference Series 286, 012035 (2011).
http://dx.doi.org/10.1088/1742-6596/286/1/012035
12.
12.A. Müller, G. Konstantinidis, M. Dragoman, D. Neculoiu, A. Dinescu, M. Androulidaki, M. Kayambaki, A. Stavrinidis, D. Vasilache, C. Buiculescu, I. Petrini, C. Anton, D. Dascalu, and A. Kostopoulos, Applied Optics 47, 1453 (2008).
http://dx.doi.org/10.1364/AO.47.001453
13.
13.R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, Appl. Phys. Lett. 91, 223106 (2007).
http://dx.doi.org/10.1063/1.2817595
14.
14.E. A. Fitzgerald, S. B. Samavedam, Y. H. Xie, and L. M. Giovane, J. Vac. Sci. Technol. A 15(3), (1997).
http://dx.doi.org/10.1116/1.580428
15.
15.L. He, X. Gu, J. Xie, F. Yun, A. A. Baski, and H. Morkoç, Mat. Res. Soc. Symp. Proc. 798 Y, 10.64 (2003).
16.
16.Yuen-Yee Wong, Edward Yi Chang, Yue-Han Wu, Mantu K. Hudait, Tsung-Hsi Yang, Jet-Rung Chang, Jui-Tai Ku, Wu-Ching Chou, Chiang-Yao Chen, Jer-Shen Maa, and Yueh-Chin Lin, Thin Solid Films 519, 6208 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.03.054
17.
17.F. Yan, H. Gao, H. Zhang, G. Wang, F. Yang, J. Yan, J. Wang, Y. Zeng, and J. Li, J. Appl. Phys. 101, 023506 (2007).
http://dx.doi.org/10.1063/1.2424537
18.
18.T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys. 77, 4389 (1995).
http://dx.doi.org/10.1063/1.359465
19.
19.Linfeng Hu, Jian Yan, Meiyong Liao, Limin Wu, and Xiaosheng Fang, Small. 7(8), 10121017 (2011).
http://dx.doi.org/10.1002/smll.201002379
20.
20.S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys. Lett. 96, 163109 (2010).
http://dx.doi.org/10.1063/1.3415499
21.
21.Xingfu Wang, Yong Zhang, Xinman Chen, Miao He, Chao Liu, Yian Yin, Xianshao Zou, and Shuti Li, Nanoscale 6, 12009 (2014).
http://dx.doi.org/10.1039/C4NR03581J
22.
22.S. Nakamura, Science 281, 956 (1998).
http://dx.doi.org/10.1126/science.281.5379.956
23.
23.Aniruddha Konar, Amit Verma, Tian Fang, Pei Zhao, Raj Jana, and Debdeep Jena, Semicond. Sci. Technol. 27, 024018 (2012).
http://dx.doi.org/10.1088/0268-1242/27/2/024018
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937742
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937742
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937742
2015-12-09
2016-09-27

Abstract

Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937742.html;jsessionid=7dkhjKzVFCwpEiQhIkh2kOCa.x-aip-live-02?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937742&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937742&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937742'
Right1,Right2,Right3,